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Abstract

Image-computable models designed for prediction of
fMRI BOLD signals have been shown to generalize well
to iEEG broadband for simple stimuli. We show that mod-
els with complex feature spaces (DNNs) that have been
used to predict natural image responses in fMRI signals
can also be trained to predict iEEG broadband responses.
The high temporal sampling afforded by iEEG signal en-
able us to precisely locate the onset of activity and char-
acterize the temporal evolution of representational tun-
ing at various recording sites. We show that the tempo-
ral onset is strongly correlated with network tuning depth
across all subjects. Furthermore, we show that tuning
properties in several channels vary over time after on-
set, with retinotopic representations subsiding and fea-
ture tuning drifting toward more semantic-like represen-
tations.
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Introduction

Intracranial EEG (iEEG) recordings offer both high temporal
sampling and reasonably high spatial resolution. It is cus-
tomary to perform a time-frequency transformation of these
signals in order to isolate specific spatiotemporally located re-
current brain processes. We refer to the power of the spec-
trogram region between 70 and 170 Hz as broadband (BB).
BB responses are of particular interest as they have been re-
lated to local neuronal (input) firing rates (Miller, Sorensen,
Ojemann, & den Nijs, 2009; Ray & Maunsell, 2011; Manning,
Jacobs, Fried, & Kahana, 2009)

Most iEEG (eCoG and sEEG) studies focus on decoding
few categories or specific stimulus properties and their change
over time. While one can infer a lot about brains from the
discriminative aspect of these signals, a predictive encoding
model of the signal offers a possible account of the repre-
sentations that produce that discrimination (Naselaris & Kay,
2015). When encoding models have been used, they have
been limited to properties of simple stimuli (Hermes, Petridou,
Kay, & Winawer, 2019). Large repertoires of natural image
responses are required to train accurate complex models with
large feature spaces, like NSD for fMRI (Allen et al., 2022).
Natural images are required to stimulate the putative interac-
tions between different representation stages in the visual cor-
tex present during normal vision.

iEEG BB responses to simple stimuli have been shown
to be well-predicted by encoding models designed for fMRI
(Hermes et al., 2019). These models leverage the familiar
concepts of receptive field (RF) and feature tuning (e.g. spa-
tial frequency and orientation tuning) in order to characterize
activity recorded at individual channels. However, this char-
acterization is reflective of both sensory and cognitive signals
that may have very different dynamics and may encode very
different features. As a result, the representation of stimulus
features at any one iEEG site may drift over the timecourse

of a single stimulus presentation. Unlike fMRI, iEEG has the
temporal resolution needed to investigate this possibility.

We designed a set of interpretable linear readout heads
between a set of feature maps (from a deep neural network
trained to categorize images) that permit smooth time-varying
feature tuning. This allowed us to consider the question of how
feature tuning vary over the timecourse of a single stimulus
presentation. We report on two evidence for time-varying rep-
resentations: time-varying retinotopic tuning and time-varying
feature tuning.

Methods
A new iEEG natural image response dataset (NSD-iEEG, here
partially presented) was recorded with subjects undergoing
epilepsy treatment at Mayo Clinic. The data was prepro-
cessed (re-referencing, time-frequency transformed) accord-
ing to current best standards for iEEG data (Mercier et al.,
2022). The subjects were presented with 1,000 distinct im-
ages (NSD’s shared1000 (Allen et al., 2022)). 900 images
were shown once while 100 images where shown 6 times. In
the following, our encoding models were trained and tested
with these 1,500 trial responses.

Our first goal is to predict the stimulus-onset-aligned BB
log-power, rv(xs, t), where v refers to one specific channel, xs
is the fixed stimulus presented during this recording epoch s
(duration T = 2.4s) and −0.8s < t < 1.6s is the time around
stimulus onset at t = 0 whose presentation duration is τ =
0.8s. In the following, we shall consider the spatial, temporal
and feature parametrization of the linear model

r̄v(xs, t) = ∑
k ji

Wvk ji(t)φk ji(xs) (1)

Where the temporal dimension will be discretized at a later
stage, but should be viewed as just another dimension on
which model tuning can vary. φk ji(xs) is a generic features
maps extractor e.g. one of the intermediary step along a DNN
backbone (k ji indexes features and 2d space, respectively).
Here we used the pytorch implementation of Alexnet as a first
and most common candidate feature extractor due to its con-
venient and manageable feature maps sizes. The linear tun-
ing weights W are separated into a spatial RF and a low-rank
(rank R) representation of feature and temporal tuning.

Wvk ji(t) = svgv ji

R

∑
r

wr
vkHr

v (t) (2)

where the tuning functions g, w and H are all normalized, ex-
plaining the need for an additional scaling factor sv specified
for each modelled unit. g and H are further constrained to be
positive valued via reparametrization.

We have also adapted the model to complex, multilayer,
feature space along the lines of the feature-weighted receptive
field (fwRF) model by rescaling and applying a consistent spa-
tial RF at the multiple (different spatial resolution) layers of the
DNN (St-Yves & Naselaris, 2018). While this complicates the
description (which for the sake of brevity is not shown here),
the resulting model still follows the same general principles
described above.



Figure 1: Distinct phases in representations in iEEG BB for various channels. A) Location of the electrodes in the left hemisphere for
subject 2. We highlighted the locations of the most predictable electrodes described in B and C. Relevant visual ROI for this subject have
also been highlighted. B) Retinotopically active channels (magenta highlight) show a clear difference in prediction accuracy (y-axis) between
a fixed, flat, RF model (fw0-tk) and a tuned RF model (fwRF-tk, RF shown in inset) in the initial peak of predictability, but not in the latter tail
present during stimulus presentation. Stimulus offset also induce a second phase of retinotopically specific activation (e.g. purple triangles
in LOC1 and LOC2 channels) in some channels. Model accuracy is also compared to a reference layerwise ridge regression model (lwRR)
were every time point is predicted independently. C) Feature tuning also vary over time. First, we note the clear positive correlation (gray line)
between tuning depth (center of “mass” of the tuning weights on the network backbone of the encoding model) and channel response onset
(empty colored circle symbols) relative to stimulus onset (t = 0). The chain of smaller dot attached to each onset circle shows the evolution of
tuning depth in their respective regions of significant validation accuracy. Green and red indicate channels from subjects 1 and 2.

Model training (via stochastic gradient descent with L2 loss
function) and validation is performed in a cross-validated man-
ner using a k-fold procedure over the whole dataset. For each
fold, a validation set (1-in-k of the overall data, k = 15 here) is
chosen and the remaining data are randomly sampled (N = 8
times) into a training set for gradient estimation and a holdout
set (20% of data) for early stopping criterion. Model parame-
ters are frozen when the holdout set reaches minimum hold-
out loss. A prediction is then made for the validation set and
averaged over all N training samples for that fold. Other inter-
pretable properties of the model were averaged over all folds
and samples.

Results

The trained model (fwRF-tk) significantly predicted BB re-
sponses in several channels (channel locations and valida-
tion accuracy for one subject shown in Fig 1A and B, respec-
tively), and to a greater degree than a model with a fixed flat
RF over the same feature maps (fw0-tk) in specific circum-
stances and channels and much greater than a model (lwRR)
that predicted every time point independently (i.e. without time
kernels) in all cases. Every predictable channel showed a
tendency for relatively high predictability after onset latency
followed by a gradual decrease, and sometime plateau.

Retinotopically active channels are identified by their robust
and highly localized spatial tuning (Fig 1B, inset). These chan-
nels also showed very strong offset activity. Interestingly, our
encoding model methodology reveals clear phases in the BB
representation for retinotopically localized channels. Model
differences between fwRF-tk and fw0-tk are highest after re-
sponse onset for a period of roughly 400ms (and after stimulus
offset in some cases) but virtually disappear afterward during
the plateau of predictability. This indicates a clear change in

the single-channel representation over time. This is, as far
as we are aware, a new observation in the characterization of
iEEG BB responses.

Our encoding model approach also reveals changes in the
BB feature representation for non-retinotopically active chan-
nels (which were the majority here). This tuning drift can be
illustrated by the concept of tuning depth. Tuning depth is,
in effect, the center of mass of neural network layer depth
weighted by the normalized encoding model feature tuning
weights. Small depth values mean that the balance of feature
tuning is on early network layers, and vice-versa. Tuning depth
at response onset correlated very strongly with response on-
set latency (Fig 1C). That is, short latency was preferentially
tuned to shallow network layers, while high latency tuned pref-
erentially to deep layers. This is consistent with the typically
conceived visual processing scaffold. However, we noticed
that tuning depth varied over time after response onset, with
a tendency for feature tuning to drift toward deeper layers.

This representational drift can occur for several reasons like
the progressive recruitment of local neural circuitry or feed-
back effects from higher cortical areas. The result of this drift
is that visual representations in all channels appear to be at-
tracted over time toward more semantic-like representations.
This kind of drift toward more semantic-like representations
following a backward flow had been observed between V4
and IT in monkey electrophysiology and explain the ubiquity of
semantic-like representation everywhere in cortex observed in
fMRI (Sexton & Love, 2022).

It would be interesting to see if this change in representa-
tions can be accounted by dynamical model (like RNNs) with
fixed tuning or what normative assumptions are required for
such a model to express the type of representational changes
observed here.
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