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Abstract
Brain decoders that reconstruct language from seman-
tic representations have the potential to improve com-
munication for people with language disorders. However,
training a semantic decoder for one participant currently
requires many hours of brain data from that participant. In
this study, we tested whether semantic decoders can be
trained on data from separate reference participants, and
then transferred to the goal participant. We functionally
aligned the brains of the participants using responses to
story and movie stimuli, and then applied the reference
decoders to new responses from the goal participant.
We found that cross-participant decoders outperformed
within-participant decoders trained on the same amount
of data. Notably, cross-participant decoding performance
was high regardless of whether functional alignment was
performed using story or movie stimuli. Our results
demonstrate that cross-participant decoding can reduce
the amount of training data required from the goal partic-
ipant, and potentially enable decoding from participants
who struggle to comprehend language stimuli.
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Introduction
Language production requires mapping between semantic,
lexical, and motor representations, and brain decoders can
target different stages of this process (Pereira et al., 2018;
Tang et al., 2023; Willett et al., 2023; Metzger et al., 2023).
Decoders that target semantic representations have the po-
tential to help people with language disorders such as apha-
sia and apraxia of speech, who struggle to transform semantic
representations into lexical or motor representations. How-
ever, in order to train a semantic decoder for a participant,
many hours of training data are required to map how semantic
representations are encoded in that participant’s brain (LeBel
et al., 2023). Another limitation is that many people with lan-
guage production impairments also have language compre-
hension impairments (Wilson et al., 2018), and may struggle
to comprehend the language stimuli that are typically used to
train semantic decoders.

An alternative to training a new decoder for each goal par-
ticipant is to train decoders on separate reference participants,
and then transfer those decoders to the goal participant. In
cross-participant decoding, responses to a shared set of func-
tional alignment stimuli are used to align the brains of the goal

and reference participants (Yamada et al., 2015; Ho et al.,
2023). Separately, responses to a larger set of decoder train-
ing stimuli are used to train the reference decoders. While
previous studies performed functional alignment and decoder
training using stimuli of the same modality, semantic decoders
operate on representations that are shared across modalities
(Tang et al., 2023). Since vision and language rely on shared
semantic representations (Fairhall & Caramazza, 2013; Dev-
ereux et al., 2013; Martin, 2016; Popham et al., 2021; Tang
et al., 2024), an intriguing possibility is that semantic de-
coders trained to reconstruct language stimuli can be trans-
ferred across participants solely based on responses to visual
stimuli. A method for decoding language from a goal partic-
ipant without requiring any language training data from that
participant could be particularly helpful for people with lan-
guage comprehension impairments.

Methods

We used functional magnetic resonance imaging (fMRI) to
record brain responses from three participants. We decoded
each participant using the other two as references. For func-
tional alignment, we recorded brain responses to 320 min-
utes of stories (LeBel et al., 2023) and 70 minutes of silent
movies (Figure 1A). We adapted a cross-participant converter
approach previously used to transfer vision decoders across
participants (Yamada et al., 2015; Ho et al., 2023). In this ap-
proach, linear models are trained to predict the activity in each
reference participant voxel using the activity in a population
of goal participant voxels. Following our hypothesis that the
functional alignment stimuli and decoder training stimuli can
be of different modalities, we compared converters trained on
responses to stories and movies.

For decoder training, we recorded brain responses to 10
hours of stories (Figure 1B). We used a GPT language model
to extract quantitative features of the stimulus words, and we
used linear regression to train voxel-wise encoding models
that predict brain responses from the stimulus features. Given
new brain responses, the we used the decoding approach
from (Tang et al., 2023) to generate word sequences that
make the encoding model predictions match the responses.

We tested the cross-participant decoders on single-trial
brain responses that were recorded while the goal participant
listened to a test story that was not used for functional align-
ment or decoder training (Figure 1C). We used the converters
to align responses from the goal participant to the reference



Figure 1: (A) Cross-participant converters predict brain re-
sponses in the reference participants using brain responses
in the goal participant. (B) Semantic language decoders gen-
erate word sequences using brain responses in the reference
participants. (C) Given new brain responses in the goal par-
ticipant, the converters are used to align the responses with
the reference brains, and the reference decoders are used to
decode the aligned responses.

brains, and then used the reference decoders to decode the
aligned responses. We combined predictions across the two
reference decoders to make them less sensitive to individual
differences in the reference participants. We quantified de-
coding performance by comparing the predicted and actual
story words using BERTScore, which is a metric designed to
measure similarity of semantic meaning (Zhang et al., 2019).

Results

We first compared cross-participant decoders to within-
participant decoders trained on the same amount of data. For
story training data, we sampled subsets of approximately 8,
16, 32, 64, and 128 minutes from 320 minutes of story stimuli
(Figure 2B). For movie training data, we sampled subsets of
approximately 8, 16, 32, and 64 minutes from 70 minutes of
movie stimuli (Figure 2C). To train within-participant language
decoders on the movie responses, we transcribed audio de-
scriptions of the movies, and trained voxel-wise language en-
coding models using the transcripts. For both story and movie
training data, we found that cross-participant decoders out-
performed within-participant decoders.

We next compared cross-participant decoders aligned us-
ing story and movie converters trained on the same amount of
data (70 minutes). We obtained a ceiling for decoding perfor-
mance by training a within-participant decoder on 10 hours
of data from the goal participant (Tang et al., 2023). Av-
eraged across all of the time-points in the test story, cross-
participant decoding performance for both the story (9.2 stan-
dard deviations above chance) and movie (8.3 standard devi-
ations above chance) converters was over half of the within-
participant ceiling (15.3 standard deviations above chance).

Qualitatively, the cross-participant decoders recovered the
meaning of the stimulus, albeit with less precision and con-
sistency than the within-participant decoder (Figure 2C). De-
coding performance using a movie converter was comparable
to decoding performance using a story converter, despite the
fact that the decoders were evaluated on story responses.

Conclusion
Our study demonstrates that either story or movie stimuli can
be used to transfer semantic decoders across participants. As
language production and comprehension impairments often
co-occur, a cross-participant decoding approach may be im-
portant for adapting decoders for people with language disor-
ders such as aphasia.

Our findings also have important implications for mental pri-
vacy (Goering et al., 2021). It was previously demonstrated
that cooperation is required both to train and apply semantic
decoders (Tang et al., 2023). Cross-participant decoding still
requires functional alignment data collected with cooperation
from the goal participant. However, using stimuli of different
modalities for functional alignment and decoder training can
obscure the relationship between the type of data collected
from a participant and the type of data that can be decoded.
Consequently, we believe that it is important to raise aware-
ness of what brain data can be used for and establish new
rights and regulations for protecting mental privacy.

Figure 2: (A) Cross-participant decoders outperformed within-
participant decoders trained on the same amount of story
data. (B) Cross-participant decoders outperformed within-
participant decoders trained on the same amount of movie
data. (C) Two segments from the test story are shown along-
side decoder predictions from the goal participant. Cross-
participant decoders aligned using story and movie data re-
covered the meaning of the stimulus, albeit less accurately
than a within-participant decoder.
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