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Abstract

Recent advancements in large-scale neural activity
recordings have revealed a continuous evolution in neu-
ral population activity associated with familiar tasks, per-
cepts, and actions over extended periods. The underlying
mechanisms and functional implications of such “repre-
sentational drift” remain poorly understood. In many sen-
sory cortices, representation stability varies with stim-
ulus type. For example, in the mouse primary visual
cortex, natural movie stimuli induce drift, unlike drifting
gratings. To understand the mechanism behind such
stimulus-dependent representational drift in visual cor-
tex, we propose that natural stimuli prompt denser re-
sponses compared to artificial ones, making denser rep-
resentations more susceptible to synaptic noise. We eval-
uated this hypothesis by training a sparse coding network
with continually updating synaptic weights. We found
that representations for more complex image patches
are denser and also exhibit more drift compared to sim-
pler ones. This result is consistent with experimental
findings. To further explore the relationship between
drift speed and representational sparsity, we developed a
mean-field model to analyze how different noise sources
contribute to drift. Our model provides a plausible expla-
nation for stimulus-dependent representational drift.
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Introduction

The spatial receptive fields of simple cells in primary visual
cortex are characterized by localized, oriented Gabor-like fil-
ters. A classic account for the formation of such receptive
fields is the sparse coding model (Olshausen & Field, ). This
model postulates that neural networks in the visual cortex has
evolved to efficiently represent natural images in the sense
that each image only triggers a few neurons to respond. Math-
ematically, this can be formulated as an unsupervised learning
task with the following objective function
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where x ∈Rn represents the vectorized image pixels, yt ∈Rd

is the output neuronal response population vector, each row of
W ∈ Rd×n is a basis function. The objective function aims to
find a set of basis functions with sparse coefficients {yi} that
can best reconstruct the image xt . Optimizing (1) leads to a
network with forward and recurrent connections, and the lo-
cally competitive algorithm (LCA) (Rozell, Johnson, Baraniuk,
& Olshausen, ). The neural dynamics is then described as
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yi = g(ui) = sign(ui)[|ui|−λ]+ (3)

and the learning rule is
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Here ui is the membrane potential of i-th output neuron, L ≡
WW⊤. Each row of W are then normalized after each up-
date step. When trained on natural image patches, this net-
work evolves to a configuration where each output neuron has
Gabor-like receptive field (Fig.1). With continual online learn-
ing, these receptive fields fluctuate, leading to the drift of rep-
resentations.
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Figure 1: Locally competitive algorithm for sparse coding in
visual cortex.

Representational drift speed is correlated with sparsity.
In our study, the neural network was first trained at batch mode
to a stationary state (Olshausen & Field, ). The receptive
field of each output neuron corresponds to each row of W,
denoted as φ∗i and it is also called “filter” or basis function.
The input consists of whitened 16× 16 image patches. Sub-
sequently, we conduct online training, where image patches
are presented to the network one at a time. We focused on
assessing the impact of synaptic noise in this ongoing on-
line learning on the representations of different “probe” image
patches (Fig. 2A): (1) Filters from the initial stage, i.e, φ∗i ; (2)
Static gratings; (3) Training image patches; (4) Novel natural
image patches. We quantified the drift speed by the popula-
tion vector (PV) y(t) using its autocorrelation coefficient. Our
findings reveal that natural image patches (used in training or
novel) drift more rapidly compared to simpler patches (learned
receptive fields and gratings) (Fig. 2B). Interestingly, natural
image patches also have denser representations as quantified
by the fraction of average active output neurons (Fig. 2C). This
suggests that random synaptic noise due to online learning
has stronger effect on the stability of denser representations.

To further examine sparsity-dependent drift speed, we as-
sessed the representational stability of a set of image patches
with increasing complexity, i.e., x̂ = ∑

K
i=1 aiφ

∗
i , where φ∗i is the

i-th row of the stationary W (Fig. 3A). A close exam of the
evolution of W under online learning showed that its fluctua-
tion can be approximated as an O-U process

dδWi j(t) =−δWi j(t)dt +
√

2Ddtξi j(t), (5)

where D is the diffusion matrix and ξi j(t) is the standard
white Gaussian noise. Indeed, we see the representations
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Figure 2: Drift of population vectors for four different type of
input (A) under continual update of W as quantified by the
autocorrelation coefficient of population vector (B). Represen-
tational sparsity of different probe patches (C).

of more complex image patches drift faster compared with
simpler patches under the dynamics of (5)(Fig. 3B). Mean-
while, more output neurons are active for more complex image
patches (Fig. 3C). To quantify the drift speed, we fit an ex-
ponential decay to the PV correlation coefficients, the plateau
residual correlation coefficient showed a clear dependence on
the representational sparsity (Fig. 3D).

Interestingly, when we train a multi-layer perceptron to re-
construct input image patches using stochastic gradient de-
scent algorithm injected with Gaussian noise, we do not ob-
serve the above sparsity-dependent drift speed phenomenon
(Fig. 4). In our ongoing study, we are
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Figure 3: Under the perturbation of W (5), more complex syn-
thetic image patches (A) drift faster as quantified by the auto-
correlation coefficients of PV (B). Meanwhile, more complex
patches have denser representations (C) and smaller plateau
PV correlation coefficients (D).

Representational sparsity of primary visual cortex neu-
rons. We next examine the representational sparsity of pri-
mary visual cortex neurons to different sensory stimuli, such
as static gratings, natural scenes, drifting gratings and natural
movies. Overall, we found a clear dependence of representa-
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Figure 4: Training a MLP to reconstruct input image patches
with SGD noise. Representations of different synthetic image
patches drift with similar speed.

tional sparsity on the complexity of stimuli (Fig. 5).
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Figure 5: Representational sparsity of different visual stimuli
in mouse primary visual cortex. Left: fraction of active neu-
rons when presented with different visual stimuli. Data from
(de Vries et al., ). Right: fraction of active neurons when re-
sponding to natural movie and passive drifting gratings. Data
from (Marks & Goard, ).

Discussion
We show that input-dependent drift could be captured by con-
tinual learning in a sparse coding network model with synaptic
noise. Given the different representational sparsity for natural
and artificial stimuli, the ongoing synaptic noise has different
effects. Overall, denser representations are more sensitive to
the noise. Our comparison with a MLP trained with SGD al-
gorithm indicates that input-dependent drift is a not generic
features of artificial neural networks (ANNs) trained for image
processing. This assertion will be examined by more system-
atic studies on ANNs with different architectures.
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