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Abstract

Weakly electric fish, such as Gnathonemus petersii, gen-
erate pulsatile electric organ discharges (EODs) that en-
able them to sense their environment through active elec-
trolocation. This plays a crucial role in several key behav-
iors, such as navigation, foraging, and avoiding preda-
tors. While the anatomical and physiological organiza-
tion of the active electrosensory system has been exten-
sively studied, the contribution of active electrolocation
to adaptive behavior in naturalistic settings remains rela-
tively underexplored. Here we present a preliminary in sil-
ico model of active sensing in electric fish, using a neural
network-based artificial agent trained by deep reinforce-
ment learning to perform an analogous active sensing
task in a 2D environment. The trained agent recapitulates
key features of natural EOD statistics, shows emergent
behavioral modularity, and provides intuitions about the
representation of key latent variables governing agent be-
havior, such as energy levels (satiety).
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Introduction

Weakly electric fishes like Gnathonemus petersii use elec-
tric pulses, or electric organ discharges (EODs), to actively
sense their environment, communicate with each other, and
sense their environment based on the EODs of nearby fish
(Von der Emde, 1999; Sawtell, Williams, & Bell, 2005; Pe-
draja & Sawtell, 2024). The role that active electrolocation
plays in the goal-oriented behaviors of fish is less well under-
stood compared to our extensive knowledge of the physiology
of the neural mechanisms responsible for EOD generation.
This knowledge gap is due to the difficulty of designing natu-
ralistic yet well-controlled studies that capture the complexity
of the animals’ sensory ecology and behavioral repertoire.

In recent years, neural network-based artificial agents
trained to perform different tasks have emerged as power-
ful tools to model animal behaviors and neural computations
(Haesemeyer, Schier, & Engert, 2019; Singh, van Breugel,
Rao, & Brunton, 2023). By transforming sensory inputs into
motor outputs similar to those of real animals, such models
offer insight into the neural and cognitive processes underly-
ing animal behaviors. They also enable flexible in silico exper-
imentation while being fully observable, allowing hypothesis
testing where experimental data collection is challenging.

Here, we present preliminary results from a biologically-
constrained artificial agent trained by deep reinforcement
learning (DRL) to perform an active-sensing foraging task in
a 2D environment, analogous to weakly electric fish behavior.

Environment and Agent

Inspired by lab experiments on Gnathonemus petersii, we
train our agents in simulated 2D tanks of size 60 cm x 60
cm (Fig 1a). Simulations are initialized with n food items
placed uniformly at random. The position and orientation of
a single agent are also initialized uniformly at random. At
each timestep, the agent observes the egocentric vector dis-
tance of the nearest food item and the nearest wall within its
sensing range. It can also observe its internal energy levels
(e € [0,1]), which increase every time it eats food, but other-
wise decrease linearly with time and activity levels. At each
timestep, it decides how much to move forward, how much
to turn, and whether or not to emit an EOD. The agent is
rewarded for eating food, penalized for both starvation and
overeating, and has a baseline metabolic cost associated with
staying alive. The agent (Fig 1a, right) consists of a recurrent
neural network (RNN) (Rajan, Harvey, & Tank, 2016) followed
by parallel two-layer Actor and Critic Multi-Layer Perceptrons
(MLPs). The former selects the agent’s actions, and the lat-
ter estimates the value of actions during training using policy
gradients (Ni, Eysenbach, & Salakhutdinov, 2021). All layers
are 64-units wide, with tanh nonlinearities. We constrain the
agent’s maximum linear and angular velocities and acceler-
ations to match experimental data collected from an electric
fish in an identically-sized tank. Simulations are run at ~ 83
FPS to enable a minimum SPI of 12ms, as is observed in lab
experiments. For simplicity, here, the agent actions and ob-
servations are deterministic.

Results

Trained agents successfully electrolocate food items while
producing movement trajectories (Fig. 1b) and EOD tran-
scripts (Fig. 1c) that resemble experimental data from real
fish. Two behavior modes (Fig 1d and e), namely “resting”
and “active foraging”, are also observed, similar to those ob-
served in real fish (von der Emde, 1992). We also observe
that the trained agent learns a “homeostatic drive” to maintain
its energy levels slightly below the maximum possible (Fig.
1e). Additionally, we find that the high energy (satiated) state
is correlated with low linear velocity and vice versa (Fig. 1e).
Furthermore, the low- and high- energy modes are observable
in the RNN’s hidden state activities (Fig. 1f).

Future Work

Next, we plan to explore the role of EODs in more com-
plex tasks involving cooperation and competition between
multiple identical and diverse agents (conspecifics and het-
erospecifics), along with richer biophysical models incorporat-
ing mechanisms of EOD generation and reception.
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Figure 1:  (a) The agent works in tandem with the tank simulation environment to learn an efficient foraging policy
(billycorgan84, 2009). At each timestep, the agent receives sensory observations and rewards from the environment and then
selects its actions. If the agent emitted an EOD in the previous timestep, it can observe the location of the nearest food and wall
within its sensing range. The agent uses a recurrent neural network (RNN) to infer the environmental (‘belief’) state, selects an
action using an Actor multilayer perceptron (MLP), and estimates the action’s value with a Critic MLP. (b) Example trajectory
from a trained agent. Food is distributed uniformly at random throughout the 60cm x 60cm tank. The agent can sense food
within its sensing range (radius=14cm). (c) Example sequential pulse intervals (SPIs) and energy of a trained agent over
a 1500-timestep episode. A sequential pulse interval is the length of time between two EODs. Periods of repeated low SPls
(frequent EODs) correlate with vigorous foraging behavior, seen in the step-wise increases in energy between 0-5000ms. High
energy (satiated) behavior correlates with higher SPIs (infrequent EODs) after 5000ms. (d) Distribution of SPIs when the
agent has high energy vs. low energy, from 30 episodes of 1500 timesteps each. When the agent’s energy is high, its
discharge patterns show a wide range of SPIs, including high SPIs (infrequent EODs). When the agent’s energy (satiety) is
low, its SPIs are low because it is actively foraging with more frequent EOD discharges. Each SPI incurs a metabolic cost,
so it is notable that the low-energy agent pulses frequently. This indicates that the low-energy agent prioritizes finding food to
avoid starvation, rather than conserving energy. (e) Distribution of agent energy levels and linear velocities (in cm/timestep)
across 30 episodes of 1500 timesteps each. The agent tends to maintain its energy at a “set point” close to full. Above this
set point, the agent is penalized for overeating. The agent’s linear velocity is bimodal (not swimming vs. swimming vigorously).
High energy levels (high satiety) correlate with low velocity, and conversely, low energy levels correlate with high velocity. The
agent’s energy level appears to influence its locomotion strategy. When the agent’s energy level (satiety) is high, it does not need
to eat more food and swims slowly. High velocity often corresponds to an agent motivated to eat more food and gain energy.
(f) Feature importance from a 100-tree random forest predicting EOD rate. Agent energy, followed by proximity to food,
is the most important predictor of EOD rate. (g) Principal component analysis (PCA) of the RNN’s hidden states, from 30
episodes of 3000 timesteps each. The hidden state output by the RNN at each timestep can be interpreted as a low-dimensional
“summary” of the agent’s belief about the state of the environment. We observe a transition along the 2" principal component
between the hidden states corresponding to a low-energy agent vs. those of a high-energy agent. This indicates that energy
may be a latent variable that plays an important role in determining the agent’s actions.
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