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Abstract

Learning tasks, even the simplest ones, involve multi-
ple brain regions (involved in sensory processing, eval-
uation of outcomes and generation of movement). Ex-
perimental protocols combined with modern techniques
(e.g., fiber photometry) allow for the simultaneous record-
ing of these observed values (or predictors, e.g., move-
ment, sensory signals, etc.) and the activities of multi-
ple brain regions (e.g., cerebellum, substantia nigra pars
compacta) during a learning task. However decomposing
the neural signals into components that encode different
predictors and the neural signal they produce during the
learning process remains challenging. Existing methods
(e.g., generalized linear models) that allow for the iden-
tification of the neural signals produced by each predic-
tor and the estimation of the contribution of each predic-
tor to the total signal during the learning process fail to
capture the signal kinetics associated with each predic-
tor. In this work we address this issue. We use optimiza-
tion tools to decompose the neural signals into the re-
spective time-dependent contributions (kernels) of each
predictor under certain modeling assumptions. We used
this kernels and their defining properties to examine how
the associated signals change on a session-by-session
basis and established the extent to which the cerebellum
contributes to dopaminergic signaling in the process of
conditioned learning.
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Introduction
Even the simplest learning tasks involve multiple brain regions
that are involved in sensory processing, evaluation of out-
comes and generation of movement. Experimental protocols
combined with modern techniques such as fiber photometry
allow for the simultaneous recording of these observed val-
ues (or predictors, e.g., movement, sensory signals, etc.) and
the activities of multiple brain regions (such as those involved
in this project; see below) during a learning task. However
decomposing the neural signals into components that encode
different predictors and the neural signal they produce during
the learning process remains challenging. Methods such as
GLM can provide link functions that estimate the contribution
of each predictor to the total signal, but do not estimate the
signal kinetics associated with each predictor.

In this work, we use optimization tools to decompose the
neural signals into the respective time-dependent contribu-
tions (kernels) of each predictor based on a priori assump-
tions (such as linear decomposition) in order to estimate how
these kernels change during the learning process. These ker-
nels provide an estimate of both the amplitudes and the kinet-
ics of the signal components contributed by each predictor.
Because the time-dependent kernels we use are the output
of dynamical systems (solutions to ordinary differential equa-
tions in response to inputs) they are interpretable in terms of
the systems building blocks.

We recently characterized functional monosynaptic pro-
jections (Cb-SNc) from the cerebellum to the substantia ni-
gra (SNc) midbrain dopaminergic nucleus (Washburn et al.,
2024). Recordings and optogenetic stimulations in mice



showed that the Cb-SNc pathway is active during movement
and induces SNc-mediated dopamine release in the dorsal
striatum, suggesting a possible role for these projections in
movement modulation. Additionally, in a simple Pavlovian
task, the Cb-SNc activity is highly responsive to reward (wa-
ter) consumption and to reward value (sweet vs regular wa-
ter), indicating a possible role for this pathway in modulating
reward-based functions in the basal ganglia. Both the basal
ganglia and the cerebellum are involved in movement con-
trol and learning. The functions of both systems are mostly
understood in terms of their respective reciprocal interactions
with the cortex. The cerebellum ensures that movements are
performed smoothly and efficiently, whereas the basal gan-
glia are important in proper movement initiation and the con-
trol of movement speed (vigor), functions that depend crucially
on dopamine modulation. Dopamine is released by the mid-
brain nucleus substantia nigra pars compacta (SNc) in the
striatum, the primary input nucleus of the basal ganglia and
its actions are known to be important for movement initiation
and speed as well as reward-based learning. The cerebel-
lum is also known to be essential for motor learning, but re-
cent studies have shown the cerebellum may also participate
in reward-based functions. Here, we describe the methodol-
ogy of decomposing these signals into components correlated
with the different predictors and we use these components to
track how these signals change through the learning process.

Methods and Results

This work is based on a simple Pavlovian task in which an-
imals (mice) learned to associate an auditory cue with a re-
ward (water or sweet water) which they consume by licking.
The animals were head fixed and signals were acquired with
embedded optic fibers. To record the activity of the cerebel-
lar projections to the SNc, GCamp7 was expressed in the
deep cerebellar nuclei (DCNs; the output nuclei of the cerebel-
lum) using a viral vector and to record the activity of the SNc
dopaminergic neurons, we used a mouse line (DAT-Cre) that
expressed Cre under the dopamine transporter (DAT) and ex-
pressed Cre-dependent red calcium indicator (jRGECO1) with
a viral vector. The two-color fluorescent indicators allowed us
to simultaneously record the activities of both cerebellar axons
and the SNc dopamine neuron somata using the same fibers
embedded (bilaterally) in the SNc. In some experiments, we
also expressed the dopamine sensor dLight1.1 in the dorsolat-
eral striatum and recorded dopamine release with fibers em-
bedded in this region.

Here we describe one set of experiments. Other experi-
ments followed a similar protocol but sometimes with variation
(e.g., addition of sweet water High reward). Animals were wa-
ter restricted on experiment days. The experiments included
at least 2 days of habituation followed by several days of the
experimental protocol for the Pavlovian task. Although the
protocol was done every day, fiber photometry recording was
done at most on alternate days to allow the genetically en-
coded indicators to recover from photobleaching. In the exper-

iments described below, recordings were done only on days 1,
3, 5, 10, 15 and 20. The protocol was as follows: in each trial,
following a period of at least 3 s that the animal did not perform
licking, a 0.3 s sound cue was presented, followed by a drop
of water (Reward) presented after exactly 1 s. In 20 % of trials
chosen at random, a cue was presented but no reward was
given (Omission trials). Each session (day) consisted of 200-
250 trials. Recordings for each trial included a time interval of
10 s before to 10 s after the cue. The animals movements (in-
cluding licking) were recorded with a high-speed video camera
and analyzed post hoc using DeepLabCut.

To obtain a first-order (linear) decomposition of each signal
into its components (kernels), we made a set of a priori sim-
plifying assumptions, listed below. These assumptions were
relaxed or varied in further iterations of the analysis, depend-
ing on how well the first-order decomposition approximated
the recorded data.

1. The recorded signal correlates with one of the three factors:
the cue (C), motor movement (licking; M), or the reward (R).

2. Signal kernels of each type (C, m or R) are identical in each
session and sum linearly. Therefore, in all trials within each
session:

(a) Each individual lick produces a signal of a fixed ampli-
tude and kinetics (the motor kernel m, which is used to
calculate the motor signal M).

(b) The cue produces a signal of fixed amplitude and kinetics
(the cue kernel C).

(c) The reward produces a signal of fixed amplitude and ki-
netics (the reward kernel R). In experiments that include
High reward, the High reward signal is a fixed scaling of
the Regular reward.

3. All signals are non-negative. In the first pass, we used
a rectified difference-of-exponentials function to estimate
each signal component (This assumption may be relaxed
for the dopamine signal, since omission of reward could re-
sult in a negative signal.)

Given these assumptions, we used standard optimization
methods to decompose the calcium signals into distinct com-
ponents as described below.

Figure 1: A. Estimate of a single trial signal with a motor ker-
nel. B. Estimate of the mean Rewarded signal

To obtain the cue kernel, we took advantage of the trials in
each session where the animal did not start to lick the water



spout immediately after the cue. These late-lick trials occurred
more in the early sessions because in later sessions, as the
animal learned to associate the cue with the reward delivery,
it started to lick earlier in response to the cue. However, even
in the late sessions there were a few late-lick trials especially
later in the session when the animal was not as thirsty. The
cue signal was obtained by fitting the average signal across
these trials with

C(t) =Camp

[
e−t/t f all,c − e−t/trise,c

]+
,

where t = 0 is the cue time, t f all,c / trise,c are the decay / rise
times and X+ = max(X ,0).

After obtaining the cue kernel, this component was sub-
tracted from the total signal in each trial and the remaining
signal was used for additional analysis. To obtain the motor
kernel, we used the Omission trials only after the cue kernel
was subtracted from each trial. We assumed that each lick
produced a unitary signal:

m(t) = mamp

[
e−(t−tm)/t f all,m − e−(t−tm)/trise,m

]+
.

The motor kernel was added across all lick times in each
Omission trial. If the licks in each trial are given by L(t) which
is 1 when t = tk and 0 otherwise, this results in a total motor
signal of

M(t) = (m⊗L)(t) = ∑
k

L(t − tk)m(t)

where ⊗ is the convolution operator. These signals were then
averaged across all trials, and then compared to the average
Omission signal from the biological data to optimize the pa-
rameters. To obtain the reward kernel, we subtracted the cue
kernel and the motor signal from the total signal in each Re-
warded trial and fit the remaining signal, averaged across tri-
als to obtain

R(t) = ramp

[
e−t/t f all,r − e−t/trise,r

]+
,

where t = 0 is the reward time. An example of the full process
is summarized in Fig. 1.

Conclusion
We examined the trial-by-trial simultaneous fiber photometry
signals recorded from Cb-SNc projections and SNc DA neu-
rons, and decomposed these signals into components that
correlate with sensory cue, movement, and reward. Using
these components, we examined how these signals change
on a session-by-session basis and established the extent to
which the cerebellum contributes to dopaminergic signaling in
the process of conditioned learning.

Acknowledgments
The authors acknowledge support from the National Institutes
of Health grants NIH MH060605, NIH MH115604 and NIH
DA044761, and from the National Science Foundation grant
NSF IOS-2002863

References
Washburn, S., Oñate, M., Yoshida, J., Vera, J., Bhuvana-

sundaram, R., Khatami, L., . . . Khodakhah, K. (2024).
The cerebellum directly modulates the substantia nigra
dopaminergic activity. Nature Neurosci., 27 , 497-513.


