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Abstract: 

Novelty detection is critical for survival in a dynamic 
environment. It has been proposed that novelty detection 
involves cell-type specific neural circuits and top-down 
modulation. However, whether and how novelty is 
encoded by the dynamic interactions of a neuronal 
network is still unclear. With the large-scale 
electrophysiology dataset from Allen Institute, we 
studied the dynamic representation of novelty in the 
networks constituted by single neurons while the mouse 
is performing a visual change detection task. Based on 
functional networks constructed with Granger causality, 
we applied an unsupervised consensus clustering 
method and uncovered distinct modular structures 
between familiar and novel stimuli, which indicated 
stronger feedforward and recurrent processes induced 
by novelty. We further investigated the dynamics of 
network structure by building snapshots of the network. 
Obtaining network embeddings through graph 
decomposition, we revealed a time-varying difference 
between the representations of neuronal networks 
induced by familiar and novel images, which is also 
reflected by the network decoding analysis. Altogether, 
our work suggested novelty induced systematic changes 
in the information flow and the novelty signal is 
dynamically encoded in the topology of the cellular-
resolution functional networks. 
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Introduction 

Salient response to novelty (Ranganath & Rainer, 
2003; Schomaker & Meeter, 2015) are crucial for 
organisms to survive in a dynamic environment 
(Homann et al. 2022; Rust & Cohen, 2022). Different 
cell types are involved differently in novelty detection, 
forming specific neural circuits and dynamics (Aitken et 
al. 2023; Garrett et al. 2023). It has been suggested that 
top-down modulation from higher areas is necessary for 
novelty detection (Bastos et al., 2023; Sikkens, Bosman 
& Olcese, 2019), but more evidence is needed to 
elucidate the network mechanism underlying novelty 
detection. 

  It has been shown that synchronization of a 
population can enhance signal propagation efficacy 
(Diesmann, Gewaltig & Aertsen, 1999; Jia, Tanabe & 
Kohn, 2013; Ratté et al. 2013), E/I balanced network 
possesses high representational capability (Denève & 
Machens, 2016), and decision making is more 
effectively encoded in small networks (Francis et al. 
2018). All these evidence suggested an additional 
dimension of neural coding lay in the topology of cellular 
networks. Meanwhile, topological information of 
networks has been demonstrated effective in node and 
graph classification tasks (Kipf & Welling, 2016; Xu et 
al. 2019). However, it remains unclear whether and how 
novel signals are encoded in the cellular-resolution 

networks, especially in the dynamical changes of 
topological structure. 

In this work, we investigated the novelty coding in the 
dynamic network of neurons in mouse visual cortex, 
With the electrophysiology dataset of mouse performing 
image-change detection task (Figure 1A), we adopted 
Granger causality in the frequency domain with a sliding 
window approach to construct dynamic networks from 
spike trains recorded from 40 mice (sessions) while 
they are performing the visual change-detection tasks. 

Results 
We constructed fully connected functional networks 

by calculating Granger causality (GC) of the spike train 
between neural pairs within the 0-30 Hz frequency 
range. Directed asymmetry index, defined as 𝐷𝐷𝐷𝐷𝐷𝐷𝑥𝑥→𝑦𝑦 =
𝐺𝐺𝐺𝐺𝑥𝑥→𝑦𝑦−𝐺𝐺𝐺𝐺𝑦𝑦→𝑥𝑥
𝐺𝐺𝐺𝐺𝑥𝑥→𝑦𝑦+𝐺𝐺𝐺𝐺𝑦𝑦→𝑥𝑥

, serves as an indicator of the directionality 

of information flow between neurons. Building upon 
previous research by Jia et al. (2022), which identified 
multi-region modules mediating feedforward and 
recurrent processes, we applied the same method here 
to detect the modular structure in the networks. Our 
findings demonstrate that this modular structure is 
present in both familiar and novel networks (Figure 1C). 
Strikingly, novel stimuli tend to evoke significantly more 
driver and driven neurons (Figure 1D, bottom), 
facilitating enhanced information flow. The excess of 
driver neurons in novel networks can originate from any 
neuron, while driven neurons are mainly replenished by 
the silencing neuron in response to familiar images. 

To investigate how neuronal interactions dynamically 
encode novelty, we employed a sliding window 
approach with a duration of 200 ms and a step of 10 ms, 
ranging from [-200 ms, 0 ms] to [550 ms, 750 ms] 
anchored to stimulus onset. Our analysis revealed 
heightened information flow between driver and driven 
neurons during stimulus presentation which markedly 
diminished during the gray screen interval (Figure 2A, 
bottom). Generalized singular value decomposition 
(GSVD) exhibits great potential for embedding directed 
networks (Abdi, 2007). Through GSVD, we embedded 
DAI networks in a low-dimensional space. Network 
embeddings were then obtained using mean pooling 
and subsequently aligned across sessions through 
mean subtraction (Figure 2B). This approach allows 
direct comparisons of familiar and novel networks 
across different sessions with varying network size 
(Figure 2B, right). Notably, both familiar and novel 
network trajectories exhibit two distinct 'cycles', with one 
corresponding to the networks' response to stimulus 
onset and the other to stimulus offset. (Figure 2C, top). 
The networks' responses to stimulus onset display 
differences between familiar and novel stimuli, whereas 
the offset networks remain similar. Decoding analysis 



based on network embedding showed the capacity of 
novelty encoding in the dynamic networks (Figure 2D). 

Network coding has not received the attention 
commensurate with its importance. The complex, time-
varying and high-dimensional nature of network 
topology harbors abundant information that may not be 
readily apparent through a straightforward analysis of 
neural responses alone. Hence, there is an escalating 
demand for research focused on uncovering the crucial 
stimulus information encoded within these dynamic 
networks. 

 

Figure 1: Stronger information flow induced by 
novelty. (A) Illustration of the experimental setting 
(Adapted from Garrett et al. 2023 & Siegle & Jia et al. 
2021). Each mouse is trained on a set of images 
(familiar images) and tested on both familiar and novel 
images. (B) Granger causality (GC) in the frequency 
domain is used to define the functional connections 
between neurons. Directed asymmetry index (DAI) 
reflects the directionality of information flow. (C) The 
modular structure of the DAI matrices (top) and 
normalized firing rates for different modules (bottom). 
Gray bands indicate stimulus presentation while the 
rest are gray screen. (D) Change of neuron’s role in the 
information flow between familiar and novel networks. 
∗∗ p < 0.01, ∗∗∗∗ p < 0.0001, n=40, paired t-test. 

 

Figure 2: Novelty encoding in the dynamic network. 
(A) Normalized firing rates for familiar and novel images 
averaged across 40 mice (top) and the mean weight for 
each module across time during familiar image 
presentation (bottom). (B) To obtain the low-
dimensional network embeddings across sessions, we 
reduced the dimension of networks through the 
generalized SVD and adopted multi-session alignment. 
(C) The averaged embedding trajectories of familiar 
and novel networks across time with starting and ending 
points marked by triangles and crosses, respectively 
(top) and two example snapshots (bottom). Light 
trajectories denote individual sessions. (D) Novelty 
decoding with network embeddings using different 
decoders. 
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