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Abstract: 

Understanding the complex interplay between visual 
stimuli and brain activity has been a focal point in 
cognitive neuroscience. The recent advent of artificial 
intelligence (AI) provides novel insights for experimental 
and computational neuroscience research. In this study, 
we developed a pioneering encoding framework, called 
“Img2EEG”, as an innovative tool for investigating visual 
mechanisms. Trained on a large-scale EEG dataset of 
natural images at the individual subject level, Img2EEG 
effectively learns individualized brain-optimized features 
and generates highly realistic EEG signals given any 
image input.  Using Img2EEG, we can track the temporal 
dynamics underlying visual processes, and uncover 
possible mechanisms of individual differences in visual 
perception. Moreover, feeding Img2EEG novel sets of 
images distinctly varied from its original training dataset, 
the artificially-generated EEG signal reproduced classic 
face-specific ‘N170’ ERP and object feature multivariate 
pattern analysis results. Furthermore, our Img2EEG 
encoding model can also conduct EEG-to-image zero-
shot retrieval task, outperforming current state-of-the-art 
EEG decoding models. Overall, Img2EEG mapping from 
visual inputs to high temporal resolution brain signals 
offers novel and powerful approaches to probe human 
visual representations. 
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Introduction 

Understanding the complex interplay between visual 
stimuli and human brain activity has been a focal point 
in cognitive neuroscience. However, traditional 
techniques still face limitations in deciphering how 
human brains process visual information: on one hand, 
analyses of neural data obtained via non-invasive EEG 
or fMRI techniques often struggle to deeply and directly 
probe the brain’s internal processing of different visual 
information; on the other hand, obtaining extensive 
brain recordings from human subjects viewing a large 
number of image stimuli is challenging due to 
constraints in experimental time and costs. 

Benefiting from the advancements in deep learning 
(Lecun et al., 2015) and the availability of large 
neuroimaging datasets (Allen et al., 2022; Hebart et al., 
2023), we are now able to better simulate and predict 
brain activity, overcoming the challenges to gain a 
deeper understanding of the brain’s visual mechanisms. 
Compared to traditional linear or inverted encoding 
models (Naselaris et al., 2011, 2012; Samaha et al., 
2016; Scotti et al., 2022), deep learning-based image-
to-brain encoding models include various visual 
features and generate brain signals more accurately. 

In this study, we introduce a high-performance image-
to-EEG encoding model, called “Img2EEG”. This model 
not only generates realistic EEG signals but also 
captures richer visual features and helps us better 
understand the dynamic processes involved in the 
brain’s visual processing. 

Methods and Results 

Img2EEG contains three different modules (low-level 
vision, high-level semantic, and integration) 
corresponding to our brain’s internal processing (Figure 
1A). The low-level vision module is composed of three 
recurrent convolutional layers from pretrained CORnet-
S (Kubilius et al., 2018, 2019) and a nonlinear low-level 
visual encoder. The high-level semantic module 
contains three feature extractors corresponding to 
visual-language (based on CLIP (Radford et al., 2021)), 
object concept (based on GloVe (Pennington et al., 
2014)), and image description information (based on 
BLIP-2 (J. Li et al., 2023) and MPNet (K. Song et al., 
2020)) and a nonlinear high-level semantic encoder. 
The integration module includes three nonlinear full-
connected integration encoders which culminate in 
generated EEG signals as output.  

We trained ten different Img2EEGs on ten human 
subjects’ EEG signals when they viewed 16540 natural 
images from THINGS EEG2 (Gifford et al., 2022) 
training set. We then tested the Img2EEGs on a test set 
of 200 images which had not been presented at all 
during the training process, coming from entirely novel 
(untrained) object categories. Img2EEG shows high 
performance at generating realistic EEG signals (Figure 
1A). 

Since Img2EEG incorporates multi-level retrievable 
visual features, we can employ a “feature ablation” 
approach to sequentially ablate corresponding modules 
in the model. By comparing the signals generated by 
these ablated models with those produced by the 
complete model in terms of similarity to the real signals, 
we can thereby track the temporal processing of visual 
information (Figure 1B). Also, we can compare these 
internal feature representations across ten models to 
infer the neural mechanism of individual differences 
(Figure 1C). 

Excitingly, we can also apply Img2EEG to conduct 
both ERP and MVPA experiments on simulated EEG 
data. By simply inputting various stimulus images to 
Img2EEG and analyzing the generated EEG signals, 
we observe the classical face-specific “N170” (Bentin et 
al., 1996; Rossion & Jacques, 2012) ERP component 



(Figure 1D), as well as temporally consistent decoding 
of object animacy (Cichy et al., 2014; Khaligh-Razavi et 
al., 2018; Wang et al., 2022) (Figure 1E). 

Finally, Img2EEG outperforms current state-of-art 
EEG-to-image decoding models (Du et al., 2023; D. Li 
et al., 2024; Y. Song et al., 2024) in 200-class zero-shot 
retrieval based on THINGS EEG2 test set, which can 
accurately decode which image the human subject 
sees from EEG signals (Figure 1F). 

 

Conclusion 

We propose Img2EEG, a high-performance image-to-
EEG encoding model, as a novel framework to probe 
human vision. Not only can Img2EEG effectively 
generate highly realistic EEG signals given image input, 
but also it provides novel approaches to deeply 
understand human brain internal representations and 
offer insights to interdisciplinary areas, such as 
cognitive neuroscience, brain-computer interface, and 
artificial intelligence. 

Figure 1: (A) Architecture of Img2EEG and some examples of generated EEG signals from Img2EEG. (B) 
Temporally-specific signal similarity decreases when ablating different features in Img2EEG. Shaded area reflects 
±SEM. Circles indicate timepoints where ablating a given feature results in a significant decrease of generated vs 
real EEG signal similarity (p<.05). (C) Individual differences in Img2EEG. Each dot indicates a pair of two subjects. 
The asterisk indicates a significant difference (p<.05). (D) Simulated face versus object ERP results. Orange or 
blue shaded area reflects ±SEM. Grey shaded area indicates the significant time-window of ERP differences 
(p<.05). (E) Simulated animate versus inanimate MVPA results. Shaded area reflects ±SEM. Red dots at the top 
indicate the timepoints where MVPA results were significantly greater than zero (p<.05). (F) Zero-shot 200-class 
retrieval performance of Img2EEG and other state-of-art EEG-to-image decoding models. Error bar reflects ±SEM. 
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