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Abstract 

Previous studies on human meta-cognition, represented 
by confidence in perceptual decisions, often focus on 
over-simplified environments that yield experiences with 
limited semantic dimensions. However, in real-life 
situations such as solving a new problem, people need 
to make sequential decisions in a complex environment, 
exploring vast combinations of actions that unfold over 
time. How do people make meta-cognitive evaluations 
out of the rich, high-dimensional cognitive experiences 
in such situations? Here we develop a computational 
method that models each individual’s meta-cognitive 
ratings (e.g., difficulty) of problem-solving experience in 
a visual puzzle game based on information-theoretic 
metrics derived from their own action sequences. 
Individuals are assumed to Bayesian update their 
“thought-space distributions” with their own behavioral 
distributions on different semantic categories. Our 
preliminary results show that information discrepancies 
between beliefs at different moments can predict the 
individual differences in self-reported difficulty.  
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Introduction 

Meta-cognitive evaluations are crucial for humans to 
flexibly refine behaviors in inference and decision-making. 
Though confidence judgments have been widely studied in 
static and dynamic environments (Meyniel et al., 2015; 
Sanders et al., 2016), with perceptual and value-based 
tasks (da Silva Castanheira et al., 2021; Rahnev et al., 
2015), demonstrating accuracies and biases (Lebreton et 
al., 2019; Ting et al., 2023), much less is known about 
meta-cognition in complex sequential decision-making 
tasks such as solving new problems. 

To predict meta-cognitive evaluations in these more 
realistic situations, we model humans as Bayesian 
observers by extending previous work on confidence 
judgment (Fleming & Daw, 2017) and the sub-goaling and 
policy updating in repetitively solving similar problems 
(Binz & Schulz, 2023; Donnarumma et al., 2016). We 
assume that human problem-solvers use their own action 
sequences to update the probability distribution of 
potentially useful actions in their thinking. We then derive 
information-theoretic metrics from these “thought-space 
distributions”, similar to quantifying cognitive effort (Zenon 
et al., 2019) and capacity (Binz & Schulz, 2023; Prat-
Carrabin et al., 2021) using information theory. We tested 
the predictive power of these metrics in human 
experimental data using human experimental data of 
retrospective self-reports on the difficulty and creativity of 
problem-solving in visual puzzle games.    

Model 

We model the problem-solver as a Bayesian ideal 
observer of one’s own behaviors [𝑎0, 𝑎1, ⋯ , 𝑎𝑇−1]  and 

changing states of the environment [𝑜0, 𝑜1, ⋯ , 𝑜𝑇] , at 

arbitrary time points [𝑡0, 𝑡1, ⋯ , 𝑡𝑇]. The granularity of the 
time series depends on different modeling contexts and 
needs: it can be as detailed as each step of action 
selection or as coarse as the beginning and end of each 
problem. 

Online updating of thought-space distribution 

The problem-solver represents the observations of 
behaviors [𝑎0, 𝑎1, ⋯ , 𝑎𝑇−1] and [𝑜0, 𝑜1, ⋯ , 𝑜𝑇] in a general 

“thought space” 𝓧 . The primitive unit of this “thought” 
could be action category or state abstraction, as long as 
the representation of such thoughts is universal across 
multiple trials or problems.  

The “thought space” serves as an effective abstraction 
of the problem space. As the problem-solver interacts with 
the environment, the more frequently used thoughts 
become more activated in their internal model. 
Mathematically, the likelihood of activating each thought 
during period [𝑡𝑗 , 𝑡𝑗+1)  follows a multinomial distribution 

over K units: 
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where 𝒙 = (𝑥1, 𝑥2, … , 𝑥𝐾) is the observed counts of each 

thought, 𝑁 = ∑ 𝑥𝑖
𝐾
𝑖=1  is the total number of observations, 

and 𝒑 = (𝑝1, … , 𝑝𝑘) is the probability of activating each 
thought. 

Before observing any behaviors, the problem-solver 
holds a prior about the probability of each thought, 
modeled as a Dirichlet distribution:  

P(𝒑|𝛂) = Dir(𝐾, 𝜶) =
1
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where 𝜶 = (𝛼1, 𝛼2, … , 𝛼𝐾) is the parameters of the Dirichlet 

distribution and B(∙) is the beta function. 

As Dirichlet distribution is the conjugate prior distribution 
of the multinomial distribution, the problem-solver's belief 
posterior after observing the behavior 𝒙 = (𝑥1, 𝑥2, … , 𝑥𝐾) is 
also a Dirichlet: 

P(𝒑|𝒙, 𝛂) = Dir(𝐾, 𝜶 + 𝒙).  

In other words, 𝜶𝑗+1 = 𝜶𝑗 + 𝒙𝑗. The final belief is 𝜶𝑇 =
 𝜶0 + ∑ 𝒙𝑗𝑗 . 

Offline meta-cognitive computation 

After completing the problem-solving process and the 
“thought”-updating process concurrently, the problem-
solver will perform offline computations when asked for 
retrospective evaluations on the problem-solving process 
during period [𝑡𝑗 , 𝑡𝑗+1). We now propose six metrics (Figure 

2).  

Observation entropy measures the uncertainty in the 

observed distribution of thought units: 𝑯(
𝒙

∑𝒙𝒊
). 

Update likelihood measures how probable the 
observation is prospectively from time point 𝒕𝒋: 

𝑳(𝒙|𝒑, 𝜶𝒋) = ∫𝐌𝐮𝐥𝐭𝐢(𝒙|𝒑)𝐃𝐢𝐫(𝒑|𝜶𝒋)𝐝𝒑. 

 



Retrieval likelihood measures how probable the  
observation is retrospectively from the final time point 𝒕𝑻: 

𝑳(𝒙|𝒑, 𝜶𝑻) = ∫𝐌𝐮𝐥𝐭𝐢(𝒙|𝒑)𝐃𝐢𝐫(𝒑|𝜶𝑻)𝐝𝒑. 

Update effort measures the information cost to transform 

the belief prospectively from 𝜶𝒋 into 𝜶𝒋+𝟏: 

𝑫𝑲𝑳(𝐃𝐢𝐫(𝜶
𝒋+𝟏), 𝐃𝐢𝐫(𝜶𝒋)), where 𝑫𝑲𝑳 denotes the KL 

divergence metric. 

Retrieval effort measures the information cost to 

transform the belief retrospectively from 𝜶𝑻 into 𝜶𝒋: 

𝑫𝑲𝑳(𝐃𝐢𝐫(𝜶
𝒋), 𝐃𝐢𝐫(𝜶𝑻)). 

Predictive cross-entropy (CE) measures the 
discrepancy between the past observation and the 

predictions made from the final belief 𝜶𝑻: ∫𝑯(
𝒙

∑𝒙𝒊
, 𝒑) 𝐝𝒑, 

given 𝒑 ∼ 𝐃𝐢𝐫(𝑲,𝜶). 

Note that not all computations are strictly offline. Metrics 
that do not involve the final belief can be computed during 
online updating. 

 
Figure 2. Offline metrics. Blue: information theoretic, 
Purple: related to the inference process.  

Predicting self-reported difficulty 

In a computer visual puzzle game adapted from “Baba Is 
You” (Fig 1A; Teikari, 2019), participants were given eight 
minutes to solve each of the five problems: two tutorials, 

one helper (5 variants, providing potential skills), two 
targets (“Glove” and “Mirror”). The order of two targets is 
counter-balanced between participants. After gameplay, 
participants made subjective evaluations on the 2nd 
tutorial, and two targets (Fig 1B).  

A total of 1226 participants were recruited from Prolific 
platform (Age: 26.34 ± 5.14; Sex: 604 Females, 622 
Males). 19 were excluded from analysis for failing ≥1 
tutorial or having an action reaction time ≥7 minutes. 

Table 1: Model comparison results (Bold: better fit). 

Model  Tutorial “Glove” “Mirror” 

Full Adj. R2 0.0640 0.4331 0.6334 

AIC -822.6 -318.7 -705.6 

Baseline Adj. R2 0.0630 0.3313 0.5778 

 AIC -825.1 -123.3 -539.3 

 

For each participant, we assumed a weak prior 𝜶0 =
(1, 1,⋯ , 1) , simulated the online updating process, and 
computed offline metrics (Fig 1C).  

To validate the hypothesis that participants' self-
evaluations on past problem-solving experience could be 
effectively modeled by offline metrics, we compared two 
linear regression models. The baseline model included 
between-participant conditions and basic performance 
measures:  

Difficulty ~ order of targets ∗ problem completion time
+ type of helper + problem solution. 

The full model extended the baseline model by including 
the offline metrics. To address concerns of multicol-
linearity, only four were added: 

Difficulty ~ ⋯+ observation entropy + update effort
+ retrieval likelihood + predictive CE. 

Model comparison suggested that inclusion of offline 
metrics substantially enhances the model's ability to 
account for individual differences in difficulty reports.  
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Figure 1. (A) Game mechanics and levels. Bottom-left: configuration of Tutorial 2 which requires a detour to avoid defeat. 
(B) Left: percentage of winning. Middle & Right: self-reported difficulty and creativity; overlapping dots indicate data 
density. (C) Spearman’s correlation between offline metrics, solution rate, and self-reports in tutorial (left), “Glove” 
(middle), “Mirror” (right). Cells show significant correlations only (p < 0.05 after fdr correction). 
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