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Abstract
We present a mathematically solvable model of critical
learning periods using the teacher-student setup from
statistical physics. By separating training into ‘disrupted’
and ‘true’ learning regimes, we model several possible
learning perturbations. Preliminary results in this model
provide evidence of critical learning periods resembling
those observed across neuroscience and deep learning,
thereby laying the foundations for a theory of critical
learning periods.
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Introduction
There is a large body of evidence across neuroscience that
disruption to learning in early stages of development can have
catastrophic long-term effects on cognitive abilities in ani-
mals Hubel & Wiesel (1970); Fine et al. (2003); Popescu &
Polley (2010). These early phases have been termed crit-
ical learning periods, or simply critical periods (CPs) Hen-
sch (2004, 2005); Cisneros-Franco et al. (2020); Maurer et
al. (2007). Likewise, recent work has identified similar periods
in training of artificial neural networks via stochastic gradient
descent Achille et al. (2017); Kleinman et al. (2023). On a bi-
ological level, these CPs are broadly understood to be driven
by strong E/I imbalance, which allows for greater sensitivity to
sensory-evoked activity Fagiolini et al. (2004); Clopath et al.
(2016); as this imbalance lessens during development, corti-
cal representations stabilise Dorrn et al. (2010). On the other
hand, despite some candidate theories, e.g. around informa-
tion plasticity measures in deep learning, the computational
principles underlying these CPs remain poorly understood. In
this work we provide a different perspective on the problem
through the language of learning dynamics in the tradition of
statistical physics.

Deep neural networks might exhibit behaviour reminiscent
of critical periods through a variety of mechanisms. One
view of CPs suggests that early periods of heightened plas-
ticity are—while sometimes activity dependent or tunable by
the environment Fagiolini et al. (1994); de Villers-Sidani et al.
(2008); Greifzu et al. (2014)—fundamentally genetically en-
coded, and once a genetic switch is flipped, the rules gov-
erning plasticity change permanently. This view has been
likened to ‘pre-training’ protocols in deep learning systems,
in which an initial unsupervised pre-training phase is followed
by a supervised fine-tuning phase, such that the learning ob-
jective fundamentally changes at a predetermined point Saxe
(2013); Zaadnoordijk et al. (2022). A second possibility re-
volves around the empirical observation of sleeper effects,

in which disruption during early sensitive periods results in
deficits which emerge only much later in life Maurer et al.
(2007); Zeanah et al. (2011). These data are hard to rec-
oncile with a change in learning objective, and instead might
arise from the disruption placing network parameters into a
different basin of attraction, ultimately yielding a different so-
lution under the dynamics of a single learning algorithm. Fur-
thermore, CPs have been observed across different sensory
modalities Wiesel & Hubel (1963); Schreiner & Polley (2014),
over a range of developmental timeframes de Villers-Sidani &
Merzenich (2011), and studies involving manipulation of neu-
romodulatory populations (thought to play a role in regulating
CPs) suggest the biological mechanisms governing CPs are
also variegated Bear & Daniels (1983); Shepard et al. (2015).
One aim of our model is to provide a framework in which to
study the full gamut of phenomena that might fall under the
umbrella definition of CPs.

Teacher-Student Framework for CP
We model critical learning periods using the teacher-student
setup Zdeborová & Krzakala (2016), commonly used in
analysing learning dynamics of deep neural networks in a
range of settings Lee et al. (2022); Gerace et al. (2022); Pa-
tel et al. (2023); Margiotta et al. (2024). The teacher-student
setup is a generative model used to construct a task—i.e. a
training set with inputs x and labels y∗—that is precisely pa-
rameterisd and it is amenable of mathematical analysis. In
this setup, randomly generated input x are given to a teacher
that provides the correct label acting as an oracle, then the
student ’s goal is to match the label of the teacher by learning
over several input-output examples.

More precisely, in the vanilla teacher-student, an input
x ∼ N (0,IN) is fed into a fixed teacher neural network—
parameterised by an input-hidden weight matrix W∗ and
hidden-output weight vector h∗—that generates the target la-
bel y∗ = φ(x;W∗,h∗), where φ denotes the two-layer neural
network function with sigmoidal non-linearity on the hidden
layer. Likewise, the student is represented by and a trainable
student neural network—parameterised by (W, h)—trained
via stochastic gradient descent on the squared loss between
the target y∗ and the student’s output φ(x;W,h). The quantity
of interest for our study of these networks is the generalisation
error defined by εg = ⟨(y∗−φ(x;W,h))2⟩ where the average
is taken over the input distribution.

Several variations of early learning disruption can be mod-
elled in this setting by modifying the training protocol for some
time before proceeding with training as described above. In
general we will refer to these two training phases as the dis-
rupted and true regimes (denoted by ∼ and ∗ respectively);



we can on to investigate whether this disrupted phase yields
the hallmarks of a CP. In particular:
Perturbed Teachers. Similarly to the approach of Lee et al.
(2021) for continual learning modelling, consider two distinct
teachers—in the two regimes—where the disrupted teacher
is perturbation of the true one. The degree of disruption is
controlled by the ‘overlap’ γ between the teachers such that
W̃ = γW∗+

√
1− γ2Z, where Zi j are iid Gaussian entries.

Frozen Units. A direct way to disrupt learning in the student
is to freeze weights into some number of hidden units, i.e.
gradients are not propagated back through the weights into
some number of hidden units. Disruptions to the network that
are not specifically in the stimulus or readout could be used
to model equivalent deficiencies such as conductive hearing
loss caused by ear infections Stephenson et al. (1995).

In this abstract we will focus on these specific kinds of per-
turbation to showcase the framework. However, our frame-
work allows manipulations including different data (i.e. la-
bel and/or input) perturbations that closely represent experi-
ments including de Villers-Sidani et al. (2008); Stephenson et
al. (1995); Hubel & Wiesel (1970).
Noisy Inputs. We can also inject noise into the inputs ob-
served by the students, i.e. the student output will be given
by φ(x+σz;W,h), where z ∈RN is a vector of samples from
the standard normal, and σ controls the strength of disrup-
tion. Modifying the inputs in this way resembles studies with
unstructured stimulus noise performed in rodent audition ex-
periments de Villers-Sidani et al. (2008).
Frozen Units. Arguably the most direct way to disrupt learn-
ing in the student is to freeze weights into some number of
hidden units, i.e. gradients are not propagated back through
the weights into some number of hidden units. Disruptions to
the network that are not specifically in the stimulus or read-
out could for instance be used to model equivalent deficien-
cies such as conductive hearing loss caused by ear infec-
tions Stephenson et al. (1995).

In the limit of large input dimension, it is possible to exactly
characterise the dynamics of the generalisation error. For
each of the modified settings described above we are able to
extend that analysis and derive ordinary differential equations
that exactly describe the dynamics of the student generalisa-
tion error during and after the disrupted period of learning. For
space constraints we refer to Saad & Solla (1995) for details.

Results
Having outlined our general approach for analysing critical pe-
riod using the teacher-student setup, we describe below early
results we have obtained in this direction.

Teacher Perturbations Induce Saddles
If early on in learning a student network is trained on a
slightly perturbed teacher, it severely hinders performance
when switching to the true underlying task i.e. when the dis-
ruption ceases, as shown in Fig. 1. Although it is well known
that for sigmoidal activations there is a tendency for student
nodes to ‘specialise’ to the teacher nodes Goldt et al. (2019),
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Figure 1: Perturbed Teachers Reveal Critical Learning Pe-
riod. Students trained on perturbations (γ = 0.85,0.9,0.95)
of the true teacher for 1×106 steps before training for 4×106

steps on the true teacher all plateau significantly earlier than
the student trained ab initio on the true teacher for the same
time in the true regime (green line). Notice that the actual
number of training steps for the ‘no disrupted’ line is shifted,
while the other lines are learning a good approximation of the
actual task from the first epoch. (inset) Generalisation error of
the student on the perturbed teacher.

the rate and degree to which this specialisation occurs is not
consistent (see discussion below). If for instance the disrupted
period of learning does not lead to full convergence on the
perturbed teacher, the student may not have fully specialised.
When learning proceeds on the true task, this lower entropy
distribution of hidden layer activity leads to a significant slow
down in learning, giving rise to a critical learning period.

De-Noising Critical Periods

The second result we obtain is from the frozen node setup;
here we focus on the importance of the length of disruption.
Beyond some disruption time there is a collapse of trajectories
in which units that are frozen in the impaired learning period
fail to activate. The effective capacity of the network when
learning the ‘true’ task is then the number of units that were
unfrozen from the start. Note, this collapse is a function of the
label noise: when the noise is increased beyond some non-
zero threshold, the inactive nodes will also eventually activate
when unfrozen. In the setting where a collapsed regime exists,
we identify two types of critical learning periods:

1. A “de-noising” critical learning period: when the teacher is
noisy, over-parameterisation can help to average out this
noise and reach a better generalisation error that students
that were disrupted and are operating with a lower capacity
in the collapsed regime.



2. A “symmetry-breaking” critical learning period: the loss
landscape is populated with saddle points, which largely
govern the speed of learning. There is evidence to suggest
that overparameterisation may help to: (a) reduce the num-
ber of saddle points in the landscape, (b) break the symme-
tries among hidden units that give rise to the saddle points.

Conclusions
Critical learning periods is a complex phenomenon that is ob-
served in a variety of experiments, such complexity makes
theoretical progresses hard. Here, we introduce a flexible and
solvable framework able to reproduce features of critical learn-
ing periods in a minimal setting, paving the way to a deeper
theoretical understanding of critical learning periods.
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