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Abstract:

As population aging burgeons globally, a major imperative exists 

to identify mechanisms of cognitive decline associated with 

aging. Working memory (WM) and decision-making (DM) are 

key cognitive functions that deteriorate with age. Emergent 

evidence from computational and empirical work has pointed to 

shared neural mechanisms underpinning both processes. The 

present study leverages this consolidative framework to identify 

shared and distinct sources of age-related decline in WM and 

DM. Younger and older adults (YA & OA) completed 

psychophysical tasks tailored to parse sources of variance in WM 

and DM reports, while scalp EEG and pupil data were recorded. 

Analyses of noise and bias in WM and DM behavior, decoding of 

EEG signals, and interrogation of phasic pupil-linked arousal 

converge to suggest that a leading source of age-related 

dysfunction - degraded sensory encoding - gives rise to decline 

across both domains. Taken together, these findings provide 

novel insights into the neural basis of WM and DM and their 

susceptibility to the inimical effects of aging.  
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Introduction 

WM and DM are building blocks of cognition that decline 

with age (Dully et al., 2018; Grady, 2012). Despite the 

wealth of research into these processes, the source of their 

age-related decline remains poorly understood (Dully et 

al., 2018; Gazzaley et al., 2005). Recent computational 

(Murray et al., 2017; Yang et al., 2019) and empirical 

(Murphy et al., 2022) studies suggest that both WM and 

DM may emerge from a common neural circuit mechanism 

that maintains (for WM) and integrates (for DM) 

information over time through shared attractor dynamics. 

These circuit mechanisms are subject to shared sources of 

noise (Schapiro et al., 2022; Wimmer et al., 2014) and bias 

(Barbosa et al., 2020; Murphy et al., 2022) that shape WM 

and DM behavior. In this study, we leverage these insights 

to interrogate the origins of age-related decline in a unified 

way. Through tailoring task paradigms to disentangle 

shared and unique variance in WM and DM, in tandem 

with the analysis of high-density scalp EEG and 

pupillometry, the contribution of a single locus of age-

related decline was identified as engendering decrements 

across both domains. 

Methods 

Behavioral, EEG, and pupil data were collected from 33 

cognitively healthy YA and 33 OA. Participants completed 

sensory-motor (SM), WM, and DM tasks (Figure 1), the 

key demand of which was to estimate the spatial location 

of checkerboard patch stimuli that could be presented 

anywhere along a circle centered on fixation. In SM trials, 

participants were tasked with immediately reproducing 

the location of a single, briefly presented target via a 

directed mouse click. The WM task was identical to the SM 

task in sensory and motor demands but with the addition 

of a i) variable WM delay between target and response cue, 

and ii) a distractor stimulus during the delay on a subset of 

trials. In the DM task, variable-length sequences of stimuli 

were presented, and participants were required to estimate 

their circular mean location. Matching the design 

characteristics across tasks meant that behavior across the 

three tasks can be considered subject to shared and distinct 

sources of variability, in sensory encoding (all three), 

motor execution (all three), WM maintenance (WM and 

DM), and temporal integration (DM only). 

 

Figure 1: Task schematics. a) SM, b) WM, c) DM. 

Results 

OA exhibited a larger absolute response error on the SM 

task compared with YA (p=.002; Figure 2a), suggesting an 

increase in sensory encoding and/or motor execution noise 

with age. Across both groups, error increased in the WM 

task compared with the SM task (p<.001) and with delay 

duration in the WM task (p<.001), suggesting the presence 

of a time-dependent ‘memory noise’. Notably, neither the 

difference in error from SM to WM task (p = .10) nor the 

impact of delay (p= .94) differed by age, thus indicating no 



difference in the magnitude of memory noise across 

groups. Error in the DM task was larger than WM error at 

matched trial lengths - a pattern that could be explained 

by compounded sensory noise from the processing of 

multiple samples in the DM task, and/or the presence of 

distinct ‘integration noise’ (p<.001 for both age groups). 

The increase in DM error with sequence length was 

uniform across age groups (p=.94). Altogether, the pattern 

of age-related differences can most parsimoniously be 

explained by age-related increases in sensory and/or motor 

noise, possibly accompanied by increased integration 

noise. Notably, OA also exhibited greater attraction of 

behavioral reports towards distractors during WM (Figure 

2b: p<.001, suggesting decreased stability of underlying 

attractor states in the face of new sensory input) and a 

larger general spatial bias of reports away from cardinal 

and toward oblique (diagonal) locations during both the 

SM and WM tasks (Figure 2c: p<.002; perhaps arising from 

structural biases in the underlying neural circuit), each of 

which help to further clarify the nature of performance 

decrements in OA. No age differences were observed in 

either psychophysical kernels (capturing the weight given 

to evidence at each sample position) or choice history 

biases (Figure 2d-e).  

 
Figure 2: Task performance and adaptation effects 

 

On the WM task, target stimulus locations could be 

reliably decoded from EEG alpha-band activity (8-12Hz) 

in both age groups (on-diagonal decoding in Figure 3a-b). 

Decoding accuracy was above chance for the entirety of 

the shortest delay duration (epoch used for this analysis). 

Temporal generalization analyses revealed a strong 

generalization from stimulus onset in YA (indicated by 

significant off diagonal decoding in Figure 3a). By contrast, 

generalizing patterns in OA only emerged during the WM 

delay, 0.6-0.8 s after stimulus onset (Figure 3b). Group 

comparisons (Figure 3c) demonstrate that age-related 

differences were confined to early time periods (0.2-1s: 

possibly reflecting sensory rather than mnemonic 

activity). This may reflect a less precise sensory code in 

OA, in keeping with the greater SM noise identified above 

(Figure 2). A novel cross-task generalization analysis 

revealed that after accounting for autocorrelation in the 

decision variable, the WM code generalizes to represent 

the evolving decision variable in the DM task in YA - key 

support for the shared neural circuit mechanism (Figure 

3d&f). However, this effect was not present in OA (Figure 

3e). Further decoding analyses are planned to explore 

additional frequency bands and account for possible age 

group differences in alpha peak frequency (p<.05).   

 
Figure 3: EEG decoding analyses from alpha power  

 

In a final analysis, we found that degradation of 

ascending arousal systems cannot explain the observed 

age-related behavioral differences. In fact, OA showed 

enhanced trial-related pupil responses compared with YA 

(cluster-based permeation tests, p < .05: Figure 4). 

 
 

Figure 4: Trial-related pupil-linked arousal responses  

Discussion 

The combined analysis of behavioral, EEG, and pupil data 

has identified sensory processing as a leading source of age-

related decline in WM and DM tasks. Our hope is that 

these data can be used to inform a unified model of WM 

and DM, in health and old age.  
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