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Abstract

When trained on sufficiently large object classification
datasets, particular artificial neural network models pro-
vide a reasonable match to core object recognition (COR)
behaviors and the underlying neural response patterns
across the primate visual ventral stream (VVS). Recent
findings in machine learning suggest that training larger
models on larger datasets with more compute budget
translates into improved task performance, but how scale
affects brain alignment is currently unclear. We here in-
vestigate the scaling laws for modeling the primate VVS
with respect to the compute-optimal allocation of dataset
and model size across over 300 models trained in a con-
trolled manner. To evaluate models’ brain alignment, we
use a set of benchmarks spanning the entire VVS and
COR behavior. We find that while increasing the num-
ber of model parameters initially improves brain align-
ment, larger models eventually lead to diminishing re-
turns. Increasing the dataset size consistently improves
alignment empirically, but we extrapolate that scale here
also flattens out for very large datasets. Combining our
optimal compute budget allocation for model and data
size into scaling laws we predict that scale alone will not
lead to substantial gains in brain alignment with current
architectures and datasets.
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Introduction

Certain artificial neural networks are the current most pre-
cise quantitative models of the primate visual ventral stream
(Yamins et al., 2014; Rajalingham et al., 2018; Schrimpf et al.,
2018; Cadena et al., 2019; Schrimpf et al., 2020). These mod-
els are typically optimized on (labeled) image datasets with
objectives such as object classification or self-supervised rep-
resentation learning. After training, the best models produce
outputs that resemble human behavioral choices, and inter-
nal activity that resembles the underlying neural response pat-
terns in cortical regions V1, V2, V4, and IT – but all models
currently fall well short of explaining all the data (Schrimpf et
al., 2018).

In machine learning, recent performance advances are in-
creasingly driven by larger volumes of training data and larger
model architectures (Kaplan et al., 2020; Hoffmann et al.,
2022; Zhai, Kolesnikov, Houlsby, & Beyer, 2022; Bahri, Dyer,
Kaplan, Lee, & Sharma, 2022). We here ask if scale is also a
key factor for model similarity to neural and behavioral data,
and if scaled-up neural network architectures optimized on
scaled-up image datasets could vastly improve model align-
ment to the primate visual ventral stream. Specifically, we ex-
plore the impact of the scale of model parameters and avail-
able training data to describe the compute-optimal allocation
of model and dataset size (”scaling laws”, Figure 1).

Figure 1: For a given compute budget (C), we determine the
scaling laws for maximal neural and behavioral alignment to
the primate visual ventral stream. We estimate the optimal
allocation to training dataset (D ∝ Cd) and model (N ∝ Cd) as
d = 0.76 and n = 0.24.

Methodology

We systematically train over 300 models from various archi-
tecture families on various image datasets. Since the cur-
rent most brain-like models are trained on image classifica-
tion, we focus on this task. We train models from the ResNet
(He, Zhang, Ren, & Sun, 2016), EfficientNet (Tan & Le,
2019), AlexNet (Krizhevsky, Sutskever, & Hinton, 2012), and
CORnet-S (Kubilius et al., 2019) families on versions of Im-
ageNet (Deng et al., 2009) and ecoset (Mehrer, Spoerer,
Jones, Kriegeskorte, & Kietzmann, 2021). To independently
manipulate model complexity and data volume, we train all
neural networks with the same recipe; minimizing a cross-
entropy loss for 100 epochs using an SGD optimizer with a
decaying cosine learning rate (5 epochs of linear warm-up,
reaching a peak learning rate of 0.1).

To assess the similarity to the primate visual ventral stream,
we use five publicly available benchmarks from Brain-Score
(Schrimpf et al., 2018, 2020) spanning V1, V2 (Freeman,
Ziemba, Heeger, Simoncelli, & Movshon, 2013), V4, IT (Majaj,
Hong, Solomon, & DiCarlo, 2015), and object recognition be-
havior (Rajalingham et al., 2018). These benchmarks test
model alignment by presenting models with the same images
that were shown to primate subjects, measuring internal ac-
tivations or behavior. Neural alignment scores are computed
with a linear predictivity metric – fitting a PLS linear regression
(Yamins et al., 2014) from model activations to brain data for
90% of images and estimating similarity on the held-out 10%
via Pearson correlation, cross-validated ten times. Behavioral
alignment scores are computed with an i2n metric – testing
if a model makes the same image-level mistakes as humans
(Rajalingham et al., 2018). All scores from these benchmarks
are adjusted to their respective noise ceilings, and we report
the overall alignment score as the mean of all five sub-scores.

Following machine learning literature (Hoffmann et al.,
2022), we capture scaling laws as parametric curves S =
Ŝ −AX−α where S is the brain alignment score (plateauing
at Ŝ) as a function of the number of model parameters X = N
and training samples X = D. We then fit a function of the
form S = Ŝ − A

Nα − B
Dβ

to estimate the optimal allocation of
compute budget to data and model scale. Curve parame-
ters (Ŝ,A,B,α,β) are learned using L-BFGS with Huber loss
(δ = 10−3).
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Figure 2: Scaling laws for models of the primate visual ventral stream. a) Training models with more data samples (D)
improves alignment to brain and behavioral data (S). b) Training larger models improves alignment, but benefits saturate at
N ≈ 108 parameters. c) Combining dataset size (darker colors indicate larger datasets) and number of model parameters (larger
markers indicate larger models) with respect to compute budget (C). Models following scaling laws N ∝ C0.24, D ∝ C0.76 yield
optimal alignment scores while other allocations of compute result in poor model scores. d) Increases in compute scale (floating
point operations per second, ”FLOPs”) most benefit model alignment to higher neural regions and behavior.

Results
Alignment scales logarithmically with dataset size. We
generate subsets of ImageNet and ecoset by uniformly sam-
pling d images per category where d ∈ {1,10,100} (trained
for 3 seeds) and {3,30,300} (1 seed). Figure 2a shows
the logarithmic dependency between model alignment and
the number of dataset samples it has been trained on. This
trend is highly comparable between the two base datasets and
across model sizes and architectures. Our estimated scaling
laws indicate that model alignment can be improved by train-
ing with more samples, but also predict a plateau at scores
∼ 25% higher than the best model (Ŝ = 0.51).

Alignment scales logarithmically with model size but di-
minishing returns. To evaluate the effect of model size,
we compare architecture instantiations with different num-
bers of parameters (N). We cover low-N regimes by build-
ing ResNetFlex models with varying numbers of layers and
widths relative to ResNet-18. Figure 2b shows model align-
ment for models with different numbers of parameters trained
on full datasets. Although alignment increases with larger
models, this trend saturates at N ≈ 108 parameters. Archi-

tecture plays a vital role in parameter-efficient alignment: e.g.,
AlexNet models score well below similar-sized ResNets.

Optimal compute allocation favors data over parameters.
Combining the number of training samples and model param-
eters, we establish the optimal allocation of compute budget
to maximize the model alignment score (Figure 2c). We es-
timate that the allocation of compute to data and parameters
should roughly follow D ∝ C0.76 and N ∝ C0.24. In other words,
when increasing the compute budget 10-fold, the dataset size
should be scaled by 5.7 and model parameters by 1.7. Again,
the effect of scale saturates at Ŝ = 0.51. Broken down into
benchmarks (Figure 2d), we observe that scale most improves
model alignment to later VVS regions and especially behavior.

Conclusion
The number of data samples and model parameters are key
factors determining the brain and behavioral alignment of
task-optimized models. We here establish compute-optimal
scaling laws that favor samples over parameters and indicate
that scale alone will be insufficient for perfect models of the
primate visual ventral stream.
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