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Abstract
Certain Large Language Models (LLMs) are effective
models of the Human Language Network, predicting
most explainable variance of brain activity in current
datasets. Even with architectural priors alone and no
training, model representations remain highly aligned to
brain data. In this work, we investigate the key architec-
tural components driving this surprising alignment of un-
trained models. To estimate LLM-to-brain similarity, we
first select language-selective units within an LLM, simi-
lar to how neuroscientists identify the language network
in the human brain. We then benchmark the brain align-
ment of these LLM units across three neural datasets and
three metrics. Building a model architecture from the
ground up, we identify that token aggregation is a key
component driving the similarity of untrained models to
brain data. Increased aggregation via multi-headed at-
tention significantly increases brain alignment, and, for
longer contexts in particular, adaptive aggregation via re-
currence further boosts model similarity to neural activ-
ity. We summarize our findings in a simple untrained
recurrent transformer model that achieves near-perfect
brain alignment.

Keywords: Brain Alignment; Large Language Models; Human
Language Network; Functional Localization; Recurrence

Introduction
Unraveling the neural mechanisms underlying language pro-
cessing in the human brain has been a longstanding challenge
in neuroscience. Driven by recent advances in machine learn-
ing, large language models (LLMs) trained via next-word pre-
diction, are now a particularly promising model family to cap-
ture the internal processing of the human language network.
When exposed to the same text stimuli (e.g., words and sen-
tences) as human participants during neuroimaging and elec-
trophysiology sessions, the most brain-like LLMs predict most
of the variance of neural responses relative to the estimated
noise ceiling (Schrimpf et al., 2021; Caucheteux & King, 2022;
Goldstein et al., 2022). A peculiar observation with LLMs as
models of the brain is that untrained models can exhibit in-
ternal representations that are nearly as brain-like as those
of their trained counterparts (Schrimpf et al., 2021). We here
explore the model components underlying the high alignment
of untrained models and identify the aggregation of input to-
kens as the primary factor driving this model-to-brain similar-
ity. Codifying our findings, we propose a simple untrained re-
current Transformer model with near-perfect alignment to the
human language network under current benchmarks.

Localization of the Language Network
Selecting the appropriate layer or set of units in a language
model for comparison against the human language network
is a crucial step that significantly impacts the final alignment.
Ideally, each model should possess a fixed set of neurons des-
ignated as its language network, independent of the dataset
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Figure 1: Comparing models to the human language net-
work. (Top) We first select the top-k language selective units
in models and brain recordings by contrasting the difference
in unit activations between sentences and lists of non-words,
following Fedorenko et al. (2010). (Bottom) We then mea-
sure the alignment between the language selective units in
the model and the language network in the brain on three
datasets and three metrics. Model scores are reported as the
mean across all these nine benchmark scores after normaliz-
ing them relative to the estimated cross-subject consistency.

or metric used. Previous studies have assessed brain align-
ment by analyzing the output of each block in a Transformer
model and selecting the maximum alignment as the final score
(Schrimpf et al., 2021). We here propose an approach that
more closely follows the methodology employed by neurosci-
entists to localize the language network in the brain – the
human language network is defined as the set of units (e.g.
voxels/electrodes) that are more selective to sentences over
perceptually-matched controls Fedorenko et al. (2010), and
we characterize the model language network in the same way.

Specifically, we present a set of sentences and lists of non-
words to each model, obtaining activations for each stimulus
from all units. We then define the model language network as
the top-k units (here k = 4096) that maximize the difference
between sentence activations and non-word activations (Fig-
ure 1). This localization method selects a distributed set of
units from across the entire network, rather than constraining
the choice of representations to a single layer as in prior work.
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Figure 2: Untrained models achieve high brain alignment via token aggregation. Alignment is evaluated on each model’s
top 4,096 language-selective units (Figure 1). The green dashed line indicates the cross-subject consistency estimate. (a) Brain
alignment scores for various pretrained models and their untrained counterparts. Plots show the mean and distribution of scores
on individual benchmarks. For untrained models, each benchmark score is averaged over 5 initializations sampled from the
same distribution. (b) Building a transformer block from the ground up, components are labeled for the ablation study in (c). (c)
Brain alignment of a single untrained transformer block with different ablations. We use each model’s representations to the last
token, except for (T)+Mean . Labels refer to (b). (d) Brain alignment of the (Full)+(R) model on the Blank2014 dataset
(story stimuli) as a function of the number of recurrent steps. ART refers to adaptive recurrence relative to the number of tokens.

Benchmarks
Datasets To evaluate model alignment to the human lan-
guage network, we use three brain recording datasets: func-
tional magnetic resonance imaging (fMRI) data from Pereira
et al. (2018) in subjects reading short passages, electrocor-
ticography (ECoG) data from Fedorenko et al. (2016) in sub-
jects reading sentences one word at a time, and fMRI data
aggregated into functional regions of interest from Blank et al.
(2014) in subjects listening to ∼ 5-minute long naturalistic sto-
ries. We use the datasets as packaged in Brain-Score
(Schrimpf et al., 2018, 2020) which include only those voxels
and electrodes that are selective to language (Figure 1).

Metrics Alignment between model predictions and brain
data can be tested in different ways and since each met-
ric might focus on different aspects of the data, we em-
ploy three common metrics in the field. Specifically, we use
Linear Predictivity with an ordinary least-squares lin-

ear regression following Schrimpf et al. (2021), Centered Ker-
nel Alignment ( CKA ) (Kornblith et al., 2019), and Representa-
tional Dissimilarity Matrices ( RDM ) (Kriegeskorte et al., 2008).

Estimation of Cross-Subject Consistency To estimate the
similarity and potential noise of brain recordings, we com-
pute each benchmark’s cross-subject consistency—referred
to as noise ceiling in previous work. For benchmarks with a
Linear Predictivity metric we estimate the consistency

by predicting the brain activity of one held-out subject from all
other subjects. For non-parametric metrics ( CKA and RDM ),
we compute the similarity between two halves of subjects over
all possible combinations. The model score on each bench-
mark, i.e. each dataset-metric pair, is normalized with the
cross-subject consistency estimate ( raw score

consistency ) and we report
the final score for each model as the average across all nine
benchmarks (three datasets × three metrics).

Results & Discussion
Untrained Models Can Exhibit High Brain Alignment
Evaluating the brain alignment for pretrained models from
the GPT-2 family (Radford et al., 2019) and the LLaMA-2-7B
model (Touvron et al., 2023) as well as their untrained coun-
terparts as initialized by the HuggingFace library (Wolf et al.,
2019), we find that scores of untrained models are consis-
tently similar to trained models (Figure 2(a); Welch’s t-test
t = 0.97, p = 0.33).

Token Aggregation is Driving Brain Alignment Ablating
the components of a single untrained causal transformer
block and measuring the resulting model’s brain alignment,
we find that increased aggregation over untrained token em-
beddings improves brain alignment (Figure 2(b,c)). For in-
stance, the increased alignment from the attention mecha-
nism ( (T)+(A) ) is comparable to a simple mean over input
tokens ( (T)+Mean ).

Adaptive Recurrent Transformer (ART) To further aggre-
gate over input tokens, we add recurrence to the untrained
single transformer block (Figure 2(b) R ). This model adapts
its computational depth according to the sequence length, al-
locating more computation for longer sequences (⌈ #tokens

8 ⌉).
Adaptively aggregating token embeddings by iterative appli-
cation of the attention mechanism leads to very high brain
alignment with large gains over previous state-of-the-art on
especially the Blank2014 stories dataset (Figure 2(c,d)).

Conclusion
Our results suggest that the right inductive biases in an archi-
tecture alone yield representations that are highly aligned to
a suite of brain recordings of the human language network.
We synthesize our findings into a simple untrained recurrent
attention architecture with high brain alignment.
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