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Abstract: 

In reinforcement learning, humans and animals rely on 
both a deliberative model-based system which builds 
internal models of the environment to facilitate learning 
and action planning, and a habitual model-free system 
which reinforces actions directly from rewards. How do 
animals arbitrate between the two systems? Previous 
studies based on behavioral modeling have provided 
evidence that the reliability of the predictions from these 
two systems determine how animals arbitrate between 
them. However, it is unknown how such computation is 
implemented by populations of neurons. In this work, we 
investigate the computational motif in networks that 
underlie the arbitration between a model-based and a 
model-free system in reinforcement learning. We trained 
recurrent neural network models that can flexibly switch 
between model-based and model-free strategies based 
on the task environment. By analyzing latent network 
activity during the arbitration process, we show how 
attractor population dynamics in networks underlie the 
model-based vs model-free arbitration. Our results 
suggested a general computational motif in networks on 
uncertainty-driven arbitration between abstract choices. 
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Introduction 

In reinforcement learning, humans and animals use 
both a model-based (MB) system which builds models 
of the external world to facilitate goal-directed behavior, 
and a model-free (MF) system which reinforces habitual 
behavior. The MB system utilizes internal predictions of 
the environment (e.g., estimate of state transitions) to 
plan actions, whereas the MF system simply reinforces 
actions that led to past rewards and avoids actions that 
led to punishments(Drummond & Niv, 2020). 

Since animals use both MB and MF strategies in 
reinforcement learning, a natural question that arises is 
how the neural system arbitrates between MB vs MF 
strategies. Behavioral modeling work has suggested 
that reliability in predictions by MB and MF systems 
determine which system dominates behavior(Lee et al., 
2014). However, it is unclear how such arbitration 
occurs in a neural system comprised of networks of 
neurons.  

Neural computations in networks are studied through 
the lens of dynamical systems(Vyas et al., 2020). In 
value-based learning and decision-making, it has been 
shown that attractor dynamics in networks account for 
the decision processes in motor choices(Genkin et al., 
2023; Wang et al., 2023; Wong & Wang, 2006). 
Although we understand how networks solve simple 
choices between motor actions, it remains unclear how 
networks resolve more abstract choices like arbitrating 
between MB vs MF strategies.  

In this work, we investigate network computational 
mechanisms underlying the arbitration between MB vs 
MF system by studying recurrent neural network 
models that are trained to perform a modified version of 
the well-known two-step task(Daw et al., 2011). In the 
original two-step task and most existing variants of the 
task(Akam et al., 2015), a MB agent is always optimal, 
and a MF agent is suboptimal. However, to properly 
study the arbitration process, we need the same animal 
or network model to sometimes behave in a model-
based way while other times behave in a model-free 
way. In the modified task, we trained the network to 
switch between MB and MF strategies based on the 
uncertainty in the environment. By analyzing latent 
network dynamics using dynamical systems methods, 
we revealed an attractor-based computational motif that 
underlies the arbitration between MB and MF learning 
strategies.  

Methods 

Behavioral task 

In this task (Fig. 1A), agents choose between two 
possible actions 𝐴1 and 𝐴2 at starting state S0 to travel 
to either state S1 or S2 and collect rewards. The task is 
organized into blocks of 300 trials.  

In each block, one action 𝐴𝑖 will more likely transit the 

agent to S1 with probability 𝑝(𝑆1|𝐴𝑖) =  𝑝𝑇 > 0.5 , 
whereas the other action will more likely transit the 
agent to S2 also with probability 𝑝𝑇 .  There are two 

possible worlds: in world 𝑊 =  𝑊1 , 𝑝(𝑆1|𝐴1) =
𝑝(𝑆2|𝐴2) = 𝑝𝑇 > 0.5 , whereas in world 𝑊 =  𝑊2 , 

𝑝(𝑆1|𝐴1) = 𝑝(𝑆2|𝐴2) = 1 − 𝑝𝑇 < 0.5.  

State S1 and S2 have complimentary probabilities of 
giving a reward (e.g., 𝑝(𝑟|𝑆1) = 0.8, 𝑝(𝑟|𝑆2) = 0.2). The 
reward probability reverses at a hazard rate of 0.02. 
Thus, agents must constantly monitor which state is 
more rewarding at any given time. 

Crucially, the agent’s observation of the state does not 
always match the true state. The state observation is 
accurate at probability 1 − 𝑝𝑆 . Here 𝑝𝑆  reflects the 

stochasticity in the state observation. When 𝑝𝑆 = 0 and 

in world W1 (ipsilateral transition rule), i.e., 𝑝(𝑆1|𝐴1) >
0.5, our modified task becomes the standard reduced 
version of the two-step task(Akam et al., 2015).  

The parameters 𝑊, 𝑝𝑇, and 𝑝𝑆 are randomly sampled 
at the beginning of each block and fixed within a block. 



 

Network training 

We trained fully connected gated recurrent networks (LSTM 

with 128 units) to perform the task. Network training was 

carried out using Advantage Actor-Critic(Wang et al., 2018). 

Network was first trained with 𝑝𝑆 = 0  until convergence, 

and then trained with 𝑝𝑆 ∈ {0, 0.25, 0.5}. Trained networks 

were tested with all possible combinations of 𝑊 ∈ {𝑊1, 𝑊2}, 
𝑝𝑇 ∈ {0.6,0.7,0.8,0.9,1.0}, 𝑝𝑆 ∈ {0, 0.05, 0.1, 0.25, 0.5}. 

Behavioral modeling 

Cognitive MB and MF models were fitted to the network 
behavior. For a MB agent, values of the two actions are 
calculated based on state-transition and state-value: 
𝑉𝑎 = 𝑝(𝑆1|𝑎)𝑉(𝑆1) + 𝑝(𝑆2|𝑎)𝑉(𝑆2) , reward prediction 

errors 𝛿 = r − V(S) are used to update 𝑉(𝑆) = 𝑉(𝑆) +
α𝛿.For a MF agent, values of the two actions are directly 

updated by reward prediction error: 𝑉(𝑎) = 𝑉(𝑎) + 𝛼𝛿. 

Analysis of population dynamics in networks 

We recorded the population activity from all 128 units in 
each trained network during the task. Using a SVM 
decoder, we first identified a 1-D subspace that best 
predicts which world 𝑊 the agent is in. Our hypothesis 
is that when the network is certain about the world type 
𝑊 = 𝑊1 or 𝑊2, it behaves like a model-based agent, 
otherwise the network adopts a model-free strategy. 

We performed principal component analysis to reduce 
the population activity dimensionality for visualization 
purposes (Fig. 1D). To analyze how population activity 
evolves along the encoding dimension for world type 𝑊, 
we adopted methods in Wang et al. (2023) and 
reconstructed energy landscapes in this 𝑊 subspace. 
Briefly, we first computed the average time derivative of 
population activity 𝑋𝑡  at binned locations [𝑥, 𝑥 + Δ𝑥] 

and time 𝑡  in the 1-D space  
𝐝𝒕𝑋𝑡

𝐝𝑡
|𝑋𝑡=𝑥 =

𝑬 𝑋𝑡∈[𝑥,𝑥+Δ𝑥]
𝑋𝑡+𝚫𝑡−𝑋𝑡

𝚫𝑡
. Then we took the spatial integral 

over these time derivatives to get the energy potential 

Φ𝑥,𝑡 at location 𝑥 and time 𝑡, Φ𝑥,𝑡 = − ∫
𝐝𝑡𝑋𝑡

𝐝𝑡
|𝑋𝑡=𝑋d𝑋𝑋

𝑥

−∞
.  

Results 

In our modified task, observations of the states are 
stochastic. By design, a MF agent would outperform a 
MB agent when stochasticity of observation 𝑝𝑆 is high, 

and a MB agent would be superior when 𝑝𝑆 is low. Our 
trained networks can indeed flexibly switch between MB 
and MF behavior for different 𝑝𝑆 (Fig. 1B, C) 

When examining latent trajectories of networks in the 
principal component space, we observed that latent 
network activity goes to different subspaces depending 
on the world type 𝑊 when the agent behaves MB and 
does not separate when the agent is MF (Fig. 1D).  

A reconstruction of the energy landscape along the 𝑊 
encoding dimension reveals the attractor population 
dynamics underlying the arbitration between MB and 
MF systems. Positive and negative sides of the 𝑊 
subspace encodes how likely the environment is in 
world 𝑊1 or 𝑊2. The further away population activity is 
from 0, the more MB the agent becomes. When the 
stochasticity in observation 𝑝𝑆 is low, the world is very 
learnable, and we observe deep attractor basins which 
respectively attract the population activity into the 𝑊1 
zone or the 𝑊2  zone, whereas when 𝑝𝑆  is high, 
population activity stays in the center and behaves in a 
MF fashion. Together, our results suggest an attractor-
based computational motif that underlies the arbitration 
between MB and MF learning strategies.  

 

Figure 1. (A) Two-step task with stochastic state observations. (B) and (C) Trained networks show model-based behavior when 𝑝𝑆 is 
low, and model-free behavior when 𝑝𝑆 is high. (D) In model-based learning, network population activity enters different subregions of the 

state space based on world type (𝑊1/𝑊2). In model-free learning, population trajectories do not separate by world type. (E) Attractor 

dynamics in networks account for the arbitration between model-based and model-free reinforcement learning. 
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