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Abstract
Particular deep neural networks (DNNs) are the current
best models of the primate visual ventral stream and the
core object recognition behaviors it supports. Despite
a rich history of studying visual function in the field of
psychophysics however, DNNs have not been thoroughly
evaluated via classical psychophysical experiments. To
address this gap, we designed a 12-AFC object recog-
nition experiment with object stimuli containing various
degrees of contour discontinuities. Humans (n = 50 in-
laboratory participants) perform well above chance even
for images containing very few fragments, with perfor-
mance scaling logarithmically with the number of frag-
mented elements, up to near-perfect performance. Lead-
ing DNN models on the other hand fail to recognize these
fragmented objects, performing at chance throughout.
Attempting to remedy this object recognition gap, we fit a
linear decoder on model activations to fragmented stim-
uli, but even with additional supervised trials model rep-
resentations were unable to support human-level frag-
mented object recognition performance. Despite this,
models as well as humans performed better on direc-
tional segment stimuli compared to phosphene-like dot
stimuli. Taken together, our results show a striking failure
case of current models of the human visual system that
is not trivial to rescue – suggesting a critical difference in
how models and humans integrate visual information.
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Introduction
As measured by alignment to neural and naturalistic behav-
ioral data in primates, particular deep neural networks (DNNs)
are currently considered the best models of the visual system
(Yamins & DiCarlo, 2016; Schrimpf et al., 2020). While the
best models currently explain around half the variance across
a range of datasets, their similarity to the human visual sys-
tem under targeted manipulations remains unclear. Specifi-
cally, state-of-the-art DNNs have not yet been thoroughly eval-
uated on their alignment to measurements from the field of
psychophysics where experiments aim to uncover the edge
conditions of visual processing (Bowers et al., 2023). We
here present first results of testing leading DNN models of
primate vision on their similarity to humans in grouping ex-
periments inspired by classical psychophysics (Wagemans et
al., 2012). We designed an object classification task in which
object stimuli are shown with sparse, fragmented visual infor-
mation — one subset with locally directional edge informa-
tion (segments), and one without (phosphenes) — which we
tested on 50 in-laboratory participants and a selection of lead-
ing DNN models of primate core object recognition.

Human Experimental Methodology
Experimental Setup We recruited 50 human participants
to perform a 12-AFC fragmented object recognition task in

Figure 1: Example stimuli used in the experiments. We
constructed deteriorated object stimuli, of which a selection is
shown here. Percentages denote relative number of elements.
(a): Phosphene (dot-like fragmented) stimuli. (b): Segment
(edge-like fragmented) stimuli. (c): Contour (edge-filtered full)
stimuli. (d): RGB (full object without background) stimuli.

the Laboratory of Psychophysics at EPFL. Participants signed
a consent form and were compensated 25CHF/hour for their
participation in the study. Participants were sat in a darkened
chamber, and stimuli were displayed foveally, spanning 8 de-
grees of visual angle. Stimuli were presented for 200ms, fol-
lowed by a 200ms 1/ f noise mask.

Stimulus Manipulations Stimuli were created from
background-removed images of common objects from the
BOSS dataset (Brodeur, Guérard, & Bouras, 2014) using a
fragment renderer (Rotermund, Scialom, Repnow, Herzog,
& Ernst, 2024). Stimuli were split into two distinct groups:
phosphenes (Figure 1a) and segments (Figure 1b). Of the 50
participants, a random half were presented phosphene stim-
uli, and the other half were presented segment stimuli. The
dataset consisted of 9 different levels of numbers of elements,
ranging logarithmically from 12% to 100% (maximum number
of elements without overlap), resulting in a total of 432 stim-
uli (4 objects per each of the 12 categories, across 9 different
numbers of elements). In each of these groups, participants
were shown all stimuli in ascending order of numbers of ele-
ments. In addition, all participants were presented the same
objects with contours, and in full RGB (Figure 1c,d).

Model Experimental Methodology

Zero-Shot Models To directly test DNNs’ capability to per-
form the fragmented object recognition task in a human-
comparable manner, we mapped a total of 14 models’ re-
sponses from ImageNet categories (Russakovsky et al., 2015)
to our 12 object categories zero-shot using a WordNet synset
mapping (Geirhos et al., 2021). We tested several models on
the task, including AlexNet (Krizhevsky, Sutskever, & Hinton,
2012), ResNet-50 (He, Zhang, Ren, & Sun, 2016), Regnet
(Radosavovic, Kosaraju, Girshick, He, & Dollár, 2020), Effi-



Figure 2: Humans are able to recognize objects with discontinued visual information, while DNNs fail. Individual dots
represent individual participants’ or models’ average performance; error bars are 95% confidence intervals. Chance per-
formance is 8.33%. (a): Human categorization performance. The x-axis shows different conditions (Figure 1), combined
across phosphenes and segments. Human performance scales logarithmically (regression fit: accuracy = 0.29∗ log(x)−0.51,
R2 = 0.73, p < 0.001). (b): Model categorization performances. Dark blue: Zero-shot models with responses mapped from
ImageNet labels without additional fitting (regression fit: accuracy= 0.01∗ log(x)+0.05, R2 = 0.11, p< 0.001). Light blue: Lin-
ear decoder-fit models with an additional 120 supervised trials within-condition. Regression fit: accuracy = 0.08∗ log(x)+0.05
(R2 = 0.46, p < 0.001). Gray: Baseline pixels model. Triangles denote networks trained to exhibit a shape-bias, while

circles denote all other networks. (c): Human and model mean performance split by phosphene and segment stimuli.

cientNet (Tan & Le, 2019), SimCLR (Chen, Kornblith, Norouzi,
& Hinton, 2020), two Barlow variants (Zbontar, Jing, Misra, Le-
Cun, & Deny, 2021), 3 CorNets (Kubilius et al., 2019), and 3
shape-biased ResNets (Geirhos et al., 2018).

Decoder-fit Models For each of our 12 object categories,
we first selected 10 ImageNet images from the corresponding
ImageNet categories. We then removed backgrounds from
these images (Gatis, 2023) and generated 120 novel frag-
mented images for all percentage levels (Figure 1; 10 images
per object category). We fit linear decoders on the penulti-
mate layer activations of a total of 16 models, including all of
the models that performed zero-shot categorization using Im-
ageNet mapping as well as a pixels baseline model, and
a ResNet-18 trained on ImageNet-21k (Ridnik, Ben-Baruch,
Noy, & Zelnik-Manor, 2021).

Results
Human Performance Improves Logarithmically in the
Number of Fragments Human subjects’ performance
was near-ceiling in both the RGB and contour conditions.
Their performance scaled logarithmically with the number of
added elements (Figure 2a), starting from an average of 24%
correct at 12% elements shown, up to 83% correct at 100%
elements shown.

Models Fail Catastrophically Model performance in the
RGB condition was also high (average 90% correct), validat-
ing the effectiveness of the ImageNet mapping procedure;
but substantially lower with contour stimuli (51% correct), and
near-chance in all fragmented conditions (Figure 2b, dark
blue). Model performance does not scale with added ele-
ments in the same way that human performance scales (two-
sided t-test on the difference of regression slopes between

humans and models, t = 30.59, p < 0.001).

Model Representations are Insufficient to Support Recog-
nition Across Discontinuities To understand whether
model representations are capable of supporting object recog-
nition in fragmented stimuli at all, we fit decoders to frag-
mented stimuli. Figure 2b shows that model (light blue) per-
formance substantially improved, but did not reach human lev-
els – neither in absolute performance (average performance
across conditions was 59% for humans vs 36% for decoder-
fit models), nor in scaling (t = 18.61, p < 0.001). Even mod-
els explicitly trained to exhibit a shape bias (Geirhos et al.,
2018) do not meaningfully outperform other models (Figure
2b).

Both Models and Humans Prefer Directional Fragments
We tested whether humans and decoder-fit models are bet-
ter at recognizing segment stimuli (Figure 1b) over phosphene
stimuli (Figure 1a). Indeed, both humans and models are sub-
stantially more accurate on segment stimuli (Figure 2c), with
large effect sizes of d = 1.96 and d = 1.44 respectively.

Conclusion
We demonstrate a striking DNN model failure to integrate
visual information across object discontinuities in a well-
controlled fragmented object psychophysical experiment that
human participants excelled on (Figure 2a,b). While super-
vised decoder training on additional stimuli enables models
to perform above chance, model performance still lags far be-
hind humans. Like humans however, decoder-fit models ex-
hibit a preference to stimuli with directional edge information
(Figure 2c). Taken together, our results suggest a clear differ-
ence in the way humans and models integrate visual informa-
tion that is not trivial to rescue.
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