
Layer-specific cortical mechanisms underlying visual perceptual learning

Monika Jozsa∗ (mj555@cam.ac.uk)
Engineering Department, University of Cambridge, Trumpington Street

Cambridge, UK

Clara Pecci Terroba∗ (cp661@cam.ac.uk)
Psychology Department, University of Cambridge, Downing Place

Cambridge, UK

Ke Jia (kjia@zju.edu.cn)
Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration

Zhejiang University, Hangzhou, China

Mengxin Wang (mengxin.wang@psy.ox.ac.uk)
Department of Experimental Psychology, University of Oxford, OX2 6GG

Oxford, UK

Zoe Kourtzi† (zk240@cam.ac.uk)
Psychology Department, University of Cambridge, Downing Place

Cambridge, UK

Yashar Ahmadian† (ya311@cam.ac.uk)
Engineering Department, University of Cambridge, Trumpington Street

Cambridge, UK

Abstract

Training in perceptual tasks can enhance the brain’s
representations of task-relevant features for improved
decision making. Recent ultra-high-field neuroimag-
ing studies have found that training in fine discrimina-
tion tasks increases signal-to-noise ratio of activity pat-
terns in the superficial layers of primary visual cortex
(V1), accompanied by an increase in GABAergic inhibi-
tion. However, the causal circuit mechanisms behind
the layer-specific changes of representation and cortical
excitation-inhibition remain unknown. Here, we theoret-
ically study these questions by training a biologically-
constrained model of V1 in a fine orientation discrimi-
nation task near a fixed orientation. Training led to (1)
strengthening (weakening) of cortical inhibition (excita-
tion), which was larger and more robust in the model’s su-
perficial layer, and (2) sharpening of the superficial-layer
tuning curves at the trained orientation, as previously re-
ported in neurophysiology experiments. Further, these
changes correlated with improved network task perfor-
mance. Finally, the mechanistic nature of our model al-
lows making testable predictions about the causal path-
ways linking layer-specific changes in excitation and inhi-
bition with representational or behavioral improvements.
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Jia et al. (2024, under review) used ultra-high-field (UHF-
7T) brain imaging in combination with magnetic resonance
spectroscopy (MRS) to investigate functional and neurochem-
ical plasticity for perceptual decisions. In their experiment,
participants performed a fine orientation discrimination task
focused at a given trained orientation. The UHF-7T analysis
showed that training increased the signal-to-noise ratio of ac-
tivity patterns in the superficial layers of V1, consistent with
(Schoups, Vogels, Qian, & Orban, 2001; Jia et al., 2020). Fur-
ther, MRS analysis showed a significant increase in the ratio
of GABA to glutamate concentration averaged across multi-
ple visual areas, which was related to performance improve-
ment (in alignment with, e.g., Ip and Bridge, 2022; Stagg et
al., 2011) and to layer-specific changes in V1 representations.
The low spatial resolution of MRS prevents the localization of
these measurements to specific visual areas or cortical lay-
ers. To address this question, we optimized the structural
parameters of a biologically-constrained model of V1 for the
same task as was used in the experiment. Our study shows
significant contribution to performance improvement of layer-
specific changes in inhibition and excitation.

Model architecture

We modelled V1 as a recurrent network with two layers,
representing the thalamorecipient middle (M) and superficial
(S) layers of V1 (Fig. 1A); for reasons of parsimony, we do
not model the feedback from V1’ S layer to its M or deep
(not modelled) layers. The layers are Stabilized Supralin-
ear Networks (SSN) —a previously validated model of corti-
cal circuitry (Rubin, Van Hooser, & Miller, 2015; Ahmadian



& Miller, 2021). The SSN is a network of excitatory (E) and
inhibitory (I) neurons that have rectified supralinear power-
law input/output functions: max(0,x)n with n > 1. The layers
share a retinotopic map that covers the area of the stimulus,
which is a grating image. This map is discretized into a grid of
“mini-columns”, each with its own orientation preference ac-
cording to an orientation map. The M layer cells1 represent
simple cells with four possible phase preferences, while the S
layer cells represent complex cells without phase preference.

Visual information first enters the M layer which feeds for-
ward to the S layer. The stimulus input to each M layer cell
is given by the rectified inner product of the cell’s Gabor fil-
ter (specified by the cell’s phase and orientation preference)
with the grating image. The feedforward projections from the
M to the S layer are local and arise solely from E cells at
the same retinotopic location, with all phase preferences con-
tributing equally. Cells also received a stimulus-independent
baseline input, which was identical across E or I cells.

The model is further constrained by known neuroanatomy:
(1) only the S layer has long-range horizontal connections be-
tween the mini-columns; these connections fall off with dis-
tance and, at equal distance, neurons with more similar pre-
ferred orientations have stronger connections. E horizontal
connections have longer range than the I ones, consistent
with neuroanatomy (Lund, Yoshioka, & Levitt, 1993), but E
and I connections have the same degree of orientation tuning.
(2) only the S layer’s responses are read out by the decision
making output (simulating the findings that the primary origin
of inter-area feedforward pathways are the superficial layers).

Denoting the full connectivity matrix of the whole network
by W , the vector of neural time constants by τ, the external
input vector by h, and the vector of neural firing rates by r, the
latter obeys the differential equation τṙ =−r+(Wr+h)n

+.
Trained parameters consisted of: the overall strength of re-

current connections of different types in each layer, denoted
by Jmid

a→b and Jsup
a→b, with a,b ∈ {E, I}; fE and fI , the strength

of feedforward E connections from the M layer E cells to the S
layer E or I cells, respectively; cE and cI , the baseline inputs
to E and I cells, respectively. We denote the set of trained
SSN parameters by ΘSSN = { fE , fI ,cE ,cI ,Jmid

a→b,J
sup
a→b}.

Training the model for orientation discrimination

The training protocol has two phases: pre-training on a gen-
eral, coarse discrimination task, followed by training in the fine
orientation discrimination task. The role of pre-training is to
gain initial parameters for training that yield orientation dis-
criminabilities comparable to naive experimental participants.
In each trial, the model sequentially receives a pair of noisy
gratings: a “reference” grating, with orientation α, followed by
a “target” grating with orientation α+ βoffset. The network’s
task in both phases is to decide whether the target grating is
clockwise (βoffset > 0) or counterclockwise (βoffset < 0) relative
to the reference. In pre-training, α and the offset were sam-
pled from wide ranges: α ∈ [15◦,165◦], βoffset ∈ [10◦,20◦].

1Cell’s firing rate represents the mean rate of a neural population.

For the training task, α was randomly jittered up to ±5◦ around
the trained orientation (55◦). βoffset was changed over time in
steps of ±0.1◦ following a 3-up-1-down staircase algorithm.

Responses of S layer E cells to the reference and target
gratings were subtracted and fed to a sigmoid perceptron (with
weight vector wsig and bias bsig) outputting the predicted prob-
ability of the clockwise choice. The loss was the perceptron
output’s cross-entropy with regularization terms encouraging
the maintenance (homeostasis) of the network’s stability and
mean activity level. The model was initialized by randomly
generating an orientation map, and perturbing ΘSSN by ±10%
from baseline values (Holt, Miller, & Ahmadian, 2023). During
pre-training, both ΘSSN and (wsig,bsig) were updated using
SGD. The fine discrimination task inherited these from pre-
training, but only trained ΘSSN. The stopping criteria for pre-
training was to achieve 75% accuracy for βoffset < 6 for the
training task. The training run for fixed number (1000) of steps.

Results

We trained the model for 50 different initialization (runs). Train-
ing for the fine discrimination task led to a reduction in the
discrimination threshold across runs (Fig. 1E), an average in-
crease in inhibitory recurrent weights (both JI→E and JI→I),
and an average decrease in excitatory weights (both JE→E
and JE→I). These changes are consistent with the empirical
finding by Jia et al. of an increase in the ratio of GABA to glu-
tamate concentration averaged across visual areas. Further,
we found that in the model these changes were stronger in the
S layer, and only there the direction of change was consistent
across all runs (Fig. 1B top vs. middle). The baseline inputs
to E and I cells (cE and cI) decreased and increased, respec-
tively (Fig. 1B bottom). Physiologically, an increase in extrasy-
naptic GABA (glutamate) may reduce (increase) both inputs;
thus, this outcome is hard to reconcile with global changes
in extrasynaptic neurotransmitters. The feedforward excita-
tory drive, fI , from the M layer onto the I cells of the S layer
decreased (Fig. 1B bottom — but fE showed no consistent
change across runs), indicating an overall suppression of in-
hibitory influence from the M layer on the S layer’s output.

Jia et al. also found a positive correlation (r=0.456, p=0.029)
between GABA/Glu ratio and task improvement. Our findings
align with this result and further delineate this relationship
across layers and specific types of connectivity (Fig. 1C). In
particular, we found significant positive (negative) correlations
between the changes in recurrent I (E) and the improvement
in discrimination threshold, that were stronger in the S layer.

Neural tuning curves in the S layer, but not M layer, showed
changes in shape consistent with increase in signal-to-noise
ratio. In particular, their tuning width decreased, and their
slope at the trained orientation increased, especially for neu-
rons that had higher slopes at this orientation (Fig. 1D), con-
sistent with previous studies (Schoups et al., 2001).

In the future, using various model ablations, we can test
the causal role of the changes in the M and S layers’ E/ I
connectivity to provide predictions for experimental studies.



Figure 1: A: Model architecture and the task. B: Training-induced changes in network parameters (boxes/whiskers represent
distributions over runs with different initial parameters). Top and middle rows in B-D correspond to M and S layers, respectively.
C: Correlations between relative changes in parameters and decrease in discrimination threshold across runs. D: Changes in
tuning curve width and slope at the trained orientation. E: Pre- and post-training discrimination thresholds for different runs.
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