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Abstract
A number of phenomena which underlie human seman-
tic cognition, and emerge during childhood, have been
established. Recent work has provided a mathematical
theory for the context unaware phenomena, using deep
linear neural networks. Here we extend this theory to en-
compass aspects of cognitive control in semantic learn-
ing. This follows later in a child’s development and re-
quires the ability to “gate” aspects of the cognitive com-
putation. Gating is a nonlinear process where portions
of the computation are inhibited in some contexts. We
use a neural network with ReLU activation to perform the
gating and model three more behaviours in semantic de-
velopment, namely domain specific attribute weighting,
new attribute induction and conceptual reorganisation.
We use a Gated Deep Linear Network to model the ReLU
network, providing the full training dynamics and inter-
pretability in its implementation of cognitive control. We
find that the ReLU network uses an intricately structured
latent representation which is mixed selective. Thus,
we demonstrate how reusable, generalizable and mixed-
selective latent representations may emerge, three prop-
erties which have previously seemed incongruent.
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Introduction
The development of semantic knowledge throughout child-
hood has been studied extensively, yielding a number of
identified empirical phenomena which underlie human cog-
nition (McClelland & Rogers, 2003; Luna, 2009; Crone &
Steinbeis, 2017). For example, 1) learning happens rapidly
following a slow initial period; 2) knowledge is acquired in
order of generality (progressive differentiation); and 3) the
absence of fine-grained distinctions early in learning results
in general concepts being extended to all objects within too
broad a class (illusory correlations). Recent work provided

a mathematical theory for semantic development based on
deep neural networks and modelled these three phenomena,
which result from the interplay of dataset statistics and the
inductive biases of neural architectures (A. M. Saxe et al.,
2019). Yet, this theory used the linear activation function to
maintain analytical tractability of the neural network learning
dynamics. As a consequence, that theory could not capture
the many context-dependent effects observed in semantic
development (Monchi et al., 2001; Fuster, 2001; Friedman &
Robbins, 2022). In this work we aim to extend this mathemat-
ical theory to encompass nonlinear network activations which
are necessary to incorporate contextual control into semantic
cognition (Rumelhart, 1990; Rumelhart & Todd, 1993). We
focus on modelling three additional semantic phenomena:
4) domain specific attribute weighting – attending to different
information in distinct contexts (domains); 5) new attribute
induction – limiting the acquisition of new knowledge to the
context in which it is introduced; 6) conceptual reorganisation
– flexibly remapping the relationship between objects based
on context (McClelland & Rogers, 2003).

Method
Similar to prior work we create a task where the network is
provided an item as input and required to produce a set of
corresponding features (A. M. Saxe et al., 2019; Braun et al.,
2022). Figure 1 summarizes our entire setup. Each item is
queried with a one-hot representation and one-hot context
feature, such that all items are present in each context. The
features then impart structure into the dataset based on the
similarity of items. For example, the output labels from “Alive”
to “Petals” form a hierarchy structure. All items are alive, only
animals can move, only birds have feathers and so on. This
block of features should be activated regardless of the queried
context. In contrast the three other blocks of output labels
need to be activated only in one of the contexts which requires
cognitive control and a nonlinear network mapping. We train
a network with full-batch gradient descent and quadratic loss
to perform this task. Importantly, the one hidden layer of the



Figure 1: Dataset used to train the ReLU network (left) and GDLN architecture used to imitate it (right). Inputs (middle matrix) are
created by appending a one hot vector encoding object identity to a one hot vector encoding context such that each item appears
in each context. Target outputs (left and right matrices) contain some context-independent (top block) and some context specific
properties (bottom three blocks). These datasets broadly follow a hierarchical structure across items (hierarchical tree depicted
in middle over input columns), but with some variation in each context-specific block. All structures are taken from A. M. Saxe
et al. (2019). The analysis in this work shows that the ReLU network dynamics arise from four implicit modules, made explicit
by the GDLN pathways towards the right, which receive different subsets of inputs and generate different subsets of outputs.
Together these graded mixed-selective pathways couple together to produce the correct output labels for each object. While
each context-specific pathway is only on in two contexts (blocks of columns) they still produce labels for all three context-specific
parts of the output space (blocks of rows). This creates errors which other pathways learn to remove. If this fine balance of
excitation and inhibition is broken then errors will be incurred.

network uses the ReLU activation function which imparts the
ability to gate on portions of the computation. We use a linear
output layer and do not regularize or bias the network towards
context specificity in its hidden neurons. Finally, we also
implement a Gated Deep Linear Network (GDLN) (A. Saxe
et al., 2022) using the same setup with the aim of replicating
the ReLU network’s gating pattern and learning trajectory.
The only difference between the two models is that the gating
of the GDLN’s hidden neurons is explicit and present from
the start, while the ReLU network learns the gating pattern
using the nonlinearity. By imitating the ReLU network the
GDLN provides interpretability into how the ReLU network
implements controlled semantic cognition.

Results
We find that the ReLU network is able to model all six old and
new phenomena of controlled semantic cognition. Figure 2(a)
depicts the loss trajectory for the ReLU network on the three
context task and we note that it achieves zero error by the
end of training. This demonstrates Domain Specific Attribute
Weighting as an appropriate gating pattern is learned. By
analysing the loss trajectory we note sudden drops in loss,
progressive differentiation (each drop gets smaller) and
illusory correlations prior to convergence, demonstrated in
Figure 2(b). Figure 2(c) depicts new attribute induction as
in each context one new attribute is introduced for only the
first item, generalised within the context and the activation
strength is reflective of how similar each item is to the first. Fi-
nally, Figure 2(d) depicts the multi-dimensional scaling (MDS)

plot of the network’s hidden layer over time. Three distinct
clusterings occur which have different relative positions of the
eight items based on which context is queried, demonstrating
conceptual reorganisation.

From Figure 2(a-d) we see that the GDLN loss trajectory
exactly match that of the ReLU network and demonstrates all
phenomena of controlled semantic cognition. We find that four
partitions of the GDLN hidden layer are required to imitate the
ReLU network. One portion of the hidden layer is gated on
for all contexts, while the remaining three are gated on for
two contexts. The output of each linear pathway through the
network is depicted in Figure 1 (right). The predicted and sim-
ulated Singular Value Decomposition (SVD) for each GDLN
pathway is depicted in Figure 2(e-f), giving rise to the pre-
dicted training dynamics in Figure 2(a). It can be proven that
this is the unique GDLN which has this loss trajectory, and
consequently this is the gating strategy implemented by the
ReLU network. Thus, we have full training dynamics for the
ReLU network in terms of the SVD of each of its effective
modules. Thus, the inductive bias of gradient descent, paired
with the dataset statistics and need for contextual control re-
sults in an intricate latent representation with structured mixed
selectivity. This emerges since this is the architecture which
minimizes the loss quickest by sharing computational units,
as proposed by the neural race hypothesis (A. Saxe et al.,
2022). Neural reuse has also been noted as a potential or-
ganisational principal for the human brain (Anderson, 2010),
pointing further to the potential generality of our findings and
the biological plausibility of this aspect of the ReLU network.



0 2000 4000 6000 8000
Epoch number

Illusory Correlations Point

New Attribute
Induction Point

0

20

40

60

80

100

Q
u
a
d
ra

ti
c 

Lo
ss

ReLU Loss

Gated Loss

Predicted Loss

1.0

0.5

0.0

0.5

1.0

1.0

0.5

0.0

0.5

1.0

0 2000 4000 6000 8000
Epoch number

0.0

0.5

1.0

1.5

2.0

2.5

3.0

S
in

g
u
la

r 
V
a
lu

e

Simulated SV

Predicted SV

0 2000 4000 6000 8000
Epoch number

0.0

0.5

1.0

1.5

2.0

S
in

g
u
la

r 
V
a
lu

e

Simulated SV

Predicted SV

GDLN Induction

GDLN MDS Plot

ReLU InductionIllusorya) b) c)

d)

e) f)
Correlations

ReLU MDS Plot

0 1
2

3

45
6

7

8

9
10

11

12

13

14

15 16

17

18

19

20

21

22 23

0

1

2

3

4 5

6
7

8

9

10 11

12

13

14

15

16 17

19
18

20

21
22 23

Figure 2: Summary of Results: a) Comparison between the predicted GDLN, actual GDLN and ReLU loss trajectory. Predicted
loss dynamics are based on a GDLN which explicitly models the implicit pathways in a ReLU network due to the nonlinearity.
b) Example of illusory correlations from the ReLU network output after 1500 epochs of training. Features from the higher levels
of the hierarchy are incorrectly attributed to all items in too broad of a category (eg: all birds can fly). c) Induction (context
specific generalization) of one new feature per context (row) for the first object (column 0, 8, 16) for the GDLN and the ReLU
network. d) Conceptual Reorganisation: The context specific hidden layer rapidly changes the relative placement of the item
in the latent space for each context based on the different feature commonalities between items. Gray lines indicate potential
context boundaries in the projected space. Colour depicts progression in time. e and f) Singular Value dynamics comparing the
predicted (dashed green) and empirical (solid purple) learning dynamics for the two pathway types of a GDLN model. e) depicts
the dynamics of the common pathway and f) depicts the averaged dynamics of all context pathways together.
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