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Abstract
Diverse studies in systems neuroscience begin with extended
periods of training known as ’shaping’ procedures. These in-
volve progressively training on components of more complex
tasks, and can make the difference between learning a task
quickly, slowly or not at all. Despite the importance of shaping
to the acquisition of complex tasks, there is as yet no the-
ory that can help guide the design of shaping procedures, or
more fundamentally, provide insight into its key role in learn-
ing. In this light, we propose and analyse a model of deep pol-
icy gradient learning on compositional reinforcement learning
(RL) tasks. Using the tools of statistical physics, we solve ex-
actly the learning dynamics and characterise different learning
strategies including primitives pre-training, in which task prim-
itives are studied individually before learning compositional
tasks. We find a complex interplay between task complexity
and the efficacy of shaping strategies. Overall, our theory pro-
vides an analytical understanding of the benefits of shaping in
a class of compositional tasks and a quantitative account of
how training protocols can disclose useful task primitives, ulti-
mately yielding faster and more robust learning.
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Introduction
Shaping is critical for effective learning in animals and hu-
mans (Skinner, 2019; Pavlov & Anrep, 1927; Elio & Ander-
son, 1984; Clerkin, Hart, Rehg, Yu, & Smith, 2017; Pashler &
Mozer, 2013; Eckstein & Collins, 2021; Dekker, Otto, & Sum-
merfield, 2022). Rather than teaching a complex task directly,
shaping aims to gradually teach the components—primitive
tasks—of a complex task and it is often exploited in the be-
havioural training of animals (Mushiake, Saito, Sakamoto,
Sato, & Tanji, 2001; Laboratory et al., 2021; Grossman, Bari,
& Cohen, 2022; Makino, 2023). Nevertheless, we do not have
a theory that can quantitatively explain the role of shaping and
how it changes the learning dynamics of intelligent systems
which could give us deeper insights into these procedures.

Shaping is a form of curriculum learning that allows ani-
mals to learn and integrate primitive tasks to complete the
higher level tasks (Schulz, Tenenbaum, Duvenaud, Speeken-
brink, & Gershman, 2017; Hupkes, Dankers, Mul, & Bruni,
2020) leveraging a compositional structure of the tasks. This

property, which is a crucial feature of shaping, is often called
systematic compositionality that enables us to flexibly reuse
previously acquired primitives by combining them (Chomsky,
2014; Smolensky, 1990; Lake, Linzen, & Baroni, 2019; De-
haene, Al Roumi, Lakretz, Planton, & Sablé-Meyer, 2022).

Here, we develop a simple theory of compositional task
learning to obtain conceptual insight into the factors affecting
learning performance. We borrow tools from statistical me-
chanics and the recent results in RL theory (Patel, Lee, Man-
nelli, Goldt, & Saxe, 2023; Bordelon, Masset, Kuo, & Pehle-
van, 2023) to shed light on the learning dynamics of compo-
sitional tasks. By characterizing the curricula primitives pre-
training and vanilla training, we reveal that curricula result in
substantial differences in training time and robustness to noise
during training.

Task and Model Setup

Figure 1: A compositional task with sequence length T and K prim-
itives. A ‘student’ network learns to make the same decisions as a
‘teacher’. Each primitive task is modelled as a pair of teacher-student
network and K primitive tasks are linearly combined via the teacher
context vector V ∗ that the student has to learn (V ).

We consider a sequential decision-making task in which a
student makes T binary choices in an episode. At time step
t, given an observation xt (for instance, representing visual
input), the student makes a decision and all T decisions for
all steps t = 1 · · ·T need to be correct to get a reward. The
correct decision for a compositional task is determined ac-
cording to the compositional rule obtained by a linear com-
bination of K primitives. Each k-th primitive task is a ran-



domly generated teacher network with parameters W ∗
k and it

is fixed throughout learning. At time step t, given a random
task input xk,t ∼ N (0,IN), the teacher defines a correct de-
cision y∗k,t = sign

(
W ∗

k · xk,t/
√

N
)

for every k-th primitive task.
The compositional task is defined by a linear combination of
the primitives which we call the teacher context, V ∗ ∈ RK

+,

ỹ∗t = sign
(

∑
K
i=1 V ∗

i
W ∗

i ·xi,t√
N

)
. This can be interpreted as linearly

combining a set of task rules in an appropriate context to gen-
erate the correct decision. The student network has the same
architecture as the teacher and learns its weights (W1...K and
V )– to generate the same decision generated by the teacher
and maximize the reward. The student can update its weights
only after it makes all T decisions, thus T can be interpreted
as a task difficulty.

Results
In the following, we first show how to achieve an analytical
solution of the learning dynamics and, finally, we demonstrate
the benefits of primitives pre-training curriculum, i.e. shaping.

Learning Dynamics Analysis
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Figure 2: a) Learning dynamics of each primitive in compositional
RL (K = 4, T = 6). Each primitive is learned in a different timescale.
b) Learning dynamics of context in compositional RL. The student
context for each primitive Vk gets aligned to the teacher value (target)
V ∗ = [0.5,0.5,0.5,0.5] as learning proceeds.

The weight update rule of the student follows an approximate
online policy gradient update. In the high-dimensional limit
(N → ∞), the stochastic learning dynamics concentrate to
deterministic dynamics. We characterise the compositional
learning dynamics by tracking the evolution of the two order
parameters: the teacher-student alignment of each k-th prim-

itive, Rk =
Wk·W ∗

k
N , where Rk is a proxy for performance on the

k-th primitive; and the context Vk. Using methods from statisti-
cal physics (Saad & Solla, 1995), we derive ordinary differen-
tial equations (ODEs) for order parameters which allow us to
capture the learning dynamics as shown in Figure 2. We anal-
yse two learning protocols: primitives pre-training and vanilla
training. In primitives pre-training, each primitive is trained in-
dividually first, i.e. updating Wk if yk,t = y∗k,t∀t ∈ ⌊T⌋. Once
the primitives are learned, the compositional task is learned -
W1...K and context vector V are updated when a sequence of
T compositional decisions is made correctly; ỹt = ỹ∗t ∀t ∈ ⌊T⌋.
In vanilla training, the student directly learns the compositional

task without pre-training. From the ODEs, we derive the typi-
cal timescale for curriculum learning and vanilla learning when
K = 2:

τcurriculum ∼ (K2T−2 + P̃1−T
0 ), (1)

τ
(K=2)
vanilla ∼ 2T−2 1

(V 0
1 V ∗

1 )
2 +(V 0

2 V ∗
2 )

2
; (2)

with P̃ = 1− θ̃

π
and θ̃ = cos−1

(
∑

K
i=1 V ∗

i ViRi√
∑

K
i=1(V

∗
i )

2
√

∑
K
i=1(Vi)2

)
, and

where V 0
k refers to the initial context value of k-th primitive.

Benefits of Curriculum Learning

Our proposed model of compositional RL confers two bene-
fits of having primitive curriculum, namely, faster learning and
robustness to noise during training.

Vanilla Primitives Pre-training
pre-training composition

=

b
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Figure 3: a) Speed boost from curriculum learning (K=2). Left: Ra-
tio of the vanilla learning time to curriculum learning. Right: Total
training time for vanilla vs. curriculum learning. b) Effect of noise
during vanilla vs. curriculum learning (σw = 0.01, σv = 0.1).

Faster Learning We find that primitive pre-training can offer
substantial learning speed benefits compared to vanilla train-
ing. As the task difficulty T increases, the training time in both
vanilla learning and primitive pre-training grows exponentially
(Figure 3a right), while their growth rate differs. Furthermore,
having larger T and smaller cosine similarity between initial
context V 0 and target context V ∗ significantly increases the
learning speed boost from the primitives pre-training curricu-
lum (Figure 3a left).

Robust Learning In the real world, learning is often noisy.
In the presence of noise during gradient update, we compare
the robustness of curriculum learning and vanilla learning. We
inject i.i.d. Gaussian noise εw ∼ N (0,σw) and εv ∼ N (0,σv)
into each element of the gradient of W and V , respectively,
and compare the learning efficiency in simulation of the two
training protocols. We varied the noise levels σw and σv and



found out that when σw is small but σv is relatively large, prim-
itives pre-training provides significantly better learning than
vanilla training as shown in Figure 3b.

Conclusion

In this study, we provide a theory of a simple case of task
composition and curriculum learning. By formulating a com-
positional task with primitives and compositional context in the
teacher-student setup, we derive a set of ODEs that can de-
scribe the learning dynamics of the task. This allows us to an-
alytically study the distinct learning dynamics emerging in two
different curricula, namely primitives pre-training and vanilla
training. In our setting, we characterise potential benefits of
curriculum learning: a speed boost in learning, and robust-
ness to the noise during learning. Our model provides a quan-
titative understanding of the importance of shaping in learning
compositional tasks.
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