
 

Expectation generation and its effect on 

subsequent perception in pain and vision 

 

Rotem Botvinik-Nezer (rotemb9@gmail.com) 
Psychological and Brain Sciences, Dartmouth College 

3 Maynard St., Hanover, NH 03755, USA 

and 

Psychology Department, Hebrew University of Jerusalem 

Mount Scopus, Jerusalem 9190501, Israel 

 

Stephan Geuter (sgeuter@jhmi.edu) 
Department of Biostatistics, Johns Hopkins University 

615 N Wolfe Street, Baltimore, MD 21205, USA 

 

Martin A. Lindquist (mlindqui@jhsph.edu) 
Department of Biostatistics, Johns Hopkins University 

615 N Wolfe Street, Baltimore, MD 21205, USA 

  

Tor D. Wager (tor.d.wager@dartmouth.edu) 
Psychological and Brain Sciences, Dartmouth College 

3 Maynard St., Hanover, NH 03755, USA 

 



 

In line with Bayesian predictive coding theories of brain 

function, cue-based expectations affect perception. 

However, it remains unclear how multiple cues are 

integrated into expectations, how these expectations 

affect subsequent perception, and if these processes are 

modality-specific or modality-general. Here, 45 

participants observed multi-value cues and reported 

their expectations regarding the painfulness of thermal 

stimuli or visual contrast of flickering checkerboards. 

The mean, variance, and skewness of the cues were 

experimentally manipulated. Then, participants 

observed the same cues, followed by thermal and visual 

stimuli, during an fMRI scan. Expected and perceived 

stimuli were indeed higher following cues with higher 

mean in both modalities, but the effects of cue variance 

were mostly not consistent with Bayesian or other 

previous theories. Instead, computational models 

indicated that people placed a larger weight on extreme 

values in both modalities, particularly low-pain cues. 

fMRI analysis showed that the effect of expectations on 

pain ratings was mostly mediated by brain systems 

related to cognitive and affective processing, rather than 

nociceptive pain. Our findings suggest that people’s 

expectations and perception are affected by extreme 

values, with some similarities and some differences 

across modalities. 
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Introduction and experimental design 

Current theories of perception, such as the “Bayesian brain” 

(Friston 2010; Friston 2012; Knill and Pouget 2004) and 

predictive coding (Clark 2013), posit that the brain represents 

the world with an internal generative model, and prediction-

based expectations combine with the incoming sensory 

information to form perceptions. This broad framework 

raises three important, unanswered questions: First, how do 

people integrate information provided by multiple sensory 

cues into expectations? Previous studies, particularly in the 

context of pain, have used multi-value cues, and mostly 

focused on the mean of available information and rarely on 

its variance (Grahl et al. 2018; Koban et al. 2019; Yoshida et 

al. 2013; Zhang et al. 2023). However, other properties of the 

cue distribution may affect the generated expectation, such as 

outliers or inliers (de Gardelle and Summerfield 2011; 

Spitzer et al. 2017), and such nonlinear weighting has not 

been studied in pain. Second, how do expectations affect 

subsequent perception, and do these processes follow 

Bayesian updating rules? Bayesian theories suggest that the 

expectation (prior belief) combines with incoming sensory 

information (likelihood) to form the perception (posterior 

belief). In line with this framework, previous studies have 

shown that perception assimilates to predicted values (Atlas 

et al. 2010; Koban et al. 2019; Summerfield and de Lange 

2014; Yoshida et al. 2013). Bayesian models further predict 

that more certain expectations affect perception to a higher 

degree (Büchel et al. 2014; Pouget et al. 2013; Summerfield 

and de Lange 2014). However, studies in pain have provided 

mixed evidence (Zaman et al. 2021). This raises the third 

question: Are these processes modality-dependent or 

modality-general? For example, uncertainty may be aversive 

particularly in the threatful context of painful stimuli. 

Here, we address these fundamental questions by directly 

testing with behavioral, computational, and neuroimaging 

analyses, how different properties of the cue distribution 

affect the generated expectations, and how these expectations 

affect subsequent perception of visual and painful stimuli. 

N=45 participants completed two main tasks: In the 

Expectation Task, they saw multi-value cues consisting of a 

rating scale with 10 marked ratings, allegedly obtained from 

previous participants, and reported the expected painfulness 

of thermal stimuli or visual contrast of flickering 

checkerboards. The mean, variance, and skewness of each 

cue’s values were experimentally manipulated. Then, in the 

Cued-Perception Task, performed during an fMRI scan, 

participants saw similar cues and then rated the painfulness 

or visual contrast of subsequent stimuli. 

Expectation generation from multi-value cues 

Replicating previous studies, expectations were higher for 
larger mean cue values in both modalities (linear mixed 

effects model, p < .001). The effect of the variance on 

expectations is less straightforward, because current theories 

suggest it affects the certainty or valence, rather than the 

value, of expectation. Surprisingly, expectations were higher 

when the variance was lower (p < .001), but this effect 

interacted with modality (p < .001), such that it was 

significant for pain (p = .002) and not for vision (p = .802). 

There was no interaction between the cue mean and variance 

(p = .171). Finally, expectations were higher for positively 

skewed cues, and lower for negatively skewed cues, 

compared to symmetric cues (both p < .001), indicating that 

expectations are drawn towards extreme values. 

To test more directly how different values are weighted 

during expectation generation, we developed a computational 

model weighting each of the 10 cue values based on its 

relative location in the cue’s distribution (inspired by Spitzer 

et al., 2017; Figure 1). Values were first rescaled to [0,1] and 

demeaned (Xi=1:10). Each value’s weighting was based on a 

combination of (1) a power term modeling the weighting of 

inliers vs. outliers with the free parameter k: 

(1)                         𝑊𝑘𝑖 =
𝑠𝑖𝑔𝑛(𝑋𝑖)∗|𝑋𝑖|𝑘

𝑋𝑖
 

and (2) a logistic term modeling the weight of values that are 

smaller vs. larger than the cue mean with the free parameter 

b: 

(2)                              𝑊𝑏𝑖 =  
1

1+𝑒(−𝑏∗𝑋𝑖)        



 

 

Figure 1. Simulations of the expectation model. Mapping 

of cue values, V (10 per cue), to weights for expectation 

computation, based on two free parameters: k (weighting of 

inliers vs. outliers) and b (weighting of values that are 

smaller vs. larger than the mean). When k = 1, inliers and 

outliers are equally weighted; when k > 1, outliers are 

weighted higher; when k < 1, inliers are weighted higher. 

When b = 0, smaller and larger values are equally weighted; 

when b > 0, larger values are weighted higher; when b < 0, 

smaller values are weighted higher. The dashed vertical line 

represents the cue mean. 

The two weights were combined and normalized to [0,1]. 

Finally, expectation was computed as the dot product of the 

vector of cue values (V) and vector of weights (W). The 

model was fit to all trials, and the free parameters were 

optimized per participant and modality using OLS. The 

model fit the data well with averaged (across participants) r 

= 0.94. At the group level, participants weighted outliers 

significantly higher in both modalities (i.e., k > 1; Wilcoxon 

signed rank test, pain p = .019, vision p = .008), and also 

smaller values specifically in pain (i.e., b < 0; pain p < .001, 

vision p = .446). These findings strengthen the conclusion 

that extreme values drive expectations in both modalities, and 

further suggest an optimism bias towards “safety signals” of 

low-pain cues (which might be specific to our sample 
population of healthy young adults). 

The effect of expectations on perception 

Overall, pain ratings were only affected by the stimulus 

intensity level and the cue mean (both p < .001), while in 

vision there were also effects of the cue variance (higher 

variance leads to higher ratings, as in Yoshida et al., 2013, p 

= .005), cue skewness (positive > symmetric, p = .040), and 

an interaction between the cue mean and the cue variance 

(larger effect of the mean when variance is lower, in 

accordance with Bayesian theories, p = .008). 

We then developed and compared five computational 

models of cue-based expectation effects on perceptual ratings 

and found that (1) for most participants, cue-based 

expectations affected the ratings (i.e., models including cue-

based expectations were significantly better than models 

ignoring them); (2) most participants did not learn to down-

weight (or ignore) the cues, although they were not predictive 

of actual stimulus intensity (i.e., models including a 

prediction-error based learning process did not improve the 

model fit significantly); and (3) these processes were largely 

modality-general (i.e., modality-specific models were not 

significantly better than modality-general models). 

We tested the effect of the cues on fMRI activity during 

painful stimuli with two a priori validated pain 

neuromarkers: The Neurologic Pain Signature (NPS, (Wager 

et al. 2013)), which is sensitive and specific to nociceptive 

pain, and the Stimulus Intensity Independent Pain Signature 

(SIIPS, (Woo et al. 2017)), which captures higher-level, 

endogenous influences on pain construction independent of 

stimulus intensity and the NPS score. The NPS score was 

affected by the stimulus intensity (p < .001) and not by the 

cue mean, variance, skewness, or their interactions. 

Conversely, the SIIPS score was only affected by the cue 

mean (p = .020). As expected, there were no effects on the 

neuromarkers’ score in vision. In addition, multilevel 

mediation analysis revealed that the SIIPS, and not the NPS, 

formally partially mediated the effect of the cue-based 

expectations on pain ratings (Figure 2). Whole-brain 

voxelwise multilevel mediation revealed that several 

individual brain regions also mediated the effect, including 

the thalamus and prefrontal cortex in pain, and visual and 

prefrontal cortex in vision. 

 

 
Figure 2. Multilevel mediation with neuromarkers. 

Conclusions 

Taken together, our findings suggest that perception is 

more complex than the recent Bayesian-driven focus on the 

mean and uncertainty of contextual information. More 

specifically, they show that extreme values have an important 

role in how people integrate information into expectations 

that later affect perception. Furthermore, these findings 

suggest that some aspects of expectation formation and their 

effect on subsequent perception are modality-general (e.g., 

the central influence of the cue mean and the importance of 

extreme values), while others are modality-dependent (e.g., 

the higher weighting of smaller values). Finally, participant-

level perception models revealed meaningful individual 

differences across participants, with the minority of 

participants ignoring the cues completely, others learning to 

ignore them during the task, and the majority being 

consistently affected by the cues. Better understanding these 

differences between sub-populations and modalities would 

advance our knowledge of how people form predictions, how 

these predictions affect perception, and how these processes 

could be leveraged to improve well-being and clinical care. 
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