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Abstract  

Learning action values is key to maximize their ef-
fective payoff in uncertain reward environments. 
But how does dopamine affect this reinforcement 
learning (RL) process in humans? To test the hy-
pothesis that increases in sustained dopamine 
concentration levels trigger a positive reward bias 
on human RL, we administered dopamine precur-
sor L-DOPA to healthy adult volunteers performing 
a restless two-armed bandit task during a double-
blind randomized placebo-controlled study. We 
found that L-DOPA decreases switching between 
volatile choice options. Using computational mod-
elling, we show that L-DOPA decreases the learn-
ing rate and precision of RL but does not affect the 
policy used to choose between options. These 
learning effects of L-DOPA are best explained by a 
positive reward bias on recurrent neural networks 
(RNNs) trained to perform the same task.  

Keywords: human reinforcement learning; dopamine; 
computation noise; recurrent neural network  

Introduction 

Dopamine has been described as crucial for reward-guided 

learning. The phasic mesolimbic dopamine release received 

abundant evidence to implement the reward prediction error 

of temporal difference-based reinforcement learning (TD-

RL) algorithm (Schultz, 2015). By contrast, dopamine brain 

concentration levels have been correlated with motivation 

and parameters of choice policies, including exploration 

(Chakroun et al., 2023; Howard et al., 2017; Niv, 2007). 

However, recent work has shown that random noise in TD-

RL explains a large fraction of the human decision variability 

otherwise attributed to exploration (Findling et al., 2019). To 

investigate possible effects of increased dopaminergic neuro-

transmission on human TD-RL, we administered L-DOPA to 

healthy adult volunteers performing a restless two-armed 

bandit task in a double-blind, randomized, between-subject, 

placebo-controlled study.  

Methods and Results 

Population and protocol. In total, 58 healthy participants 

were included in the study (n = 28 for placebo group, n = 30 

for L-DOPA group; between-subject; all males, 27,75 ± 5,9 

years; double-blind design). The participants reported no his-

tory of neurological or psychiatric disease, and no family his-

tory of psychotic disorders. They reported no addiction to 

psychoactive drugs, nor history of psychotropic medication. 

Before taking part in the study, all participants provided in-

formed written consent and passed a medical check. The pro-

cedures were approved by the local ethics committee. 

 After ingestion of ascorbic acid (placebo; group in grey) 

or L-DOPA (Modopar: 150mg L-DOPA + benserazide; 

group in red), completion of medical checks and other tasks 

unrelated to this study, participants performed a restless two-

armed bandit task (Fig. 1a) (96 trials/block; 2 blocks). In each 

trial, participants were asked to choose one of two shapes to 

receive its currently associated reward (1-99 points). Partici-

pants were asked to maximize their monetary payoff. They 

were asked to favor precision over speed, and no time limit 

was imposed on the latency of their responses. (Fig. 1b). 

Behavioral results. As expected, the probability to choose 

the same arm as in the previous trial grew as a function of the 

obtained reward (Fig. 2a; mixed-effects ANOVA, F(7,399) = 

215.2, p < 0.001). Interestingly, placebo and L-DOPA groups 

differed with respect to this psychometric curve (F(1,57) = 

16.0, p < 0.001), an effect which depended on the magnitude 

of the obtained reward (interaction: F(7,399) = 3.02, p < 

0.01). Participants under L-DOPA repeated more their last 

choice than under placebo following lower-than-average re-

wards (rank-sum tests: p < 0.05, z(57) > 2.26, all other bins 

data : z(57) < 1.81, p > 0.05, BF < 1.93). To investigate 

whether this tendency to switch less (repeat more) following 

smaller rewards under L-DOPA is aligned with individual 

differences in this behavioral metric, we applied a Principal 

Component Analysis (PCA) on this metric for the placebo 

group (step #1), and reconstructed the scores of the first com-

ponent (PC1, 64% expl. var.) for the L-DOPA group (step 

#2). Finally, we pooled the two groups and applied a median 

split to PC1 scores (step #3). Like L-DOPA, PC1 was asso-

ciated with individual differences in the probability to repeat 

the last choice following smaller rewards. Moreover, PC1 

scores differed significantly between the L-DOPA and pla-

cebo groups (rank-sum test between placebo and L-DOPA: 

p<0.01, z= -2.73) (Fig. 2a, inset)  

Reinforcement Learning model. To capture the subopti-

mal variability of human decisions, we fitted a noisy TD-RL 

model (Findling et al., 2019) composed of four free parame-

ters: (1) a learning rate α that controls the update of option 

values following each obtained reward; (2) a decay rate δ that 

controls the exponential forgetting of unchosen option val-

ues; (3) a learning noise ζ that controls the inverse precision 

of the TD-RL process; (4) a choice temperature τ that gener-

ates exploration through a ‘softmax’ choice policy. (Fig. 2b). 

To ensure that the inclusion of learning noise (controlled by 

its Weber fraction ζ -M1&M2) were necessary to fit partici-

pants’ choices but not asymmetry in TD-RL (positive and 

Figure 1. Protocol and behavioral task  



negative learning rate α added in M2&M4 (Lefebvre et al., 

2017)), we performed random-effects Bayesian model selec-

tion (Rigoux et al., 2014). The first model M1 described  

above outperformed the other three models for both placebo 

and L-DOPA groups (Fig. 2c.; exceedance of P> 0.997). Crit-

ically, we performed standard parameters recovery to vali-

date our fitting procedure of the winning model M1 (stars 

show significant correlations; p<0,01) (Fig. 2d). 

 Then, using a Hierarchical Bayesian Inference (HBI) pro-

cedure for parameter fitting at the group level (Piray et al., 

2019), we observed that α is significantly lower (two-sample 

t test, p = 0.02, z(56) = -2.49) and ζ significantly higher (p 

<0.01, z(56) = 2.98) in the L-DOPA group compared to the 

placebo group. We did not find any difference across groups 

for δ and τ. 

 Recurrent Neural Networks (RNNs). Finally, we trained 

and tested 10 RNNs corrupted by computation noise in the 

recurrent layer (Findling & Wyart, 2020) on the same task as 

humans (Fig. 3a). We then fitted global – not structural 

(weights) – parameters of the trained RNNs to human behav-

ior, including two key parameters: (1) an input bias (βin) that 

controls the reward received by the RNN as input; (2) an in-

put gain (γin) that controls the magnitude of the reward re-

ceived by the recurrent layer (Fig. 3a). Using the same HBI 

procedure (Piray et al., 2019), we found that L-DOPA is as-

sociated with a positive increase in input bias βin (p = 0.011, 

z(56) = 2.63) but no change in input gain (γin : p = 0.37, z(56) 

= -0.91, Fig. 3b). To determine whether a positive input bias 

explains L-DOPA effects on TD-RL, we simulated RNNs 

with varying input bias βin. These simulations were then fitted 

using the noisy TD-RL model M1 to investigate the relation 

between TD-RL and RNN parameters. We found that a posi-

tive input bias βin on RNN computations reproduces the effect 

of L-DOPA on the rate and precision of TD-RL (Fig. 3c). In 

other terms, applying a positive reward bias at the input of 

the recurrent layer implementing RL decreases its learning 

rate and precision. Importantly, affecting the input gain did 

not produce the same effects (data not shown).   

Conclusion 

Increases in sustained dopamine concentration levels de-

crease human switching between volatile choice options, es-

pecially following smaller rewards, by decreasing the rate 

and precision of human reinforcement learning. These learn-

ing effects of L-DOPA are best explained by a positive re-

ward bias in RNNs trained in the same conditions. 

Figure 3. Recurrent Neural Networks (RNNs) 
 

Figure 2. Behavioral results & noisy temporal difference-based Reinforcement Learning model 
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