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Abstract
The human brain is capable of producing a vast range
of useful and complex computations. Yet, limited re-
sources imply that excelling in one cognitive function
should come at the expense of another one, resulting in
a trade-off. If so, how can we systematically discover the
computational goals that drive the functional design of
human cognition? In this work we utilize Pareto optimal-
ity theory to map the computational trade-offs that drive
individual differences in the functional organization of the
human brain. We suggest that individual differences in
resting-state fMRI-based functional connectivity can be
explained by a trade-off between three competing goals:
1) energy cost minimization 2) cognitive control and goad
directed attention 3) memory and internal processing.
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Introduction
The human brain has the capacity to process enormous
amounts of information and produce a vast range of useful
and complex behaviors. Yet, the brain’s computational ca-
pacity is not limitless (Buschman, Siegel, Roy, & Miller, 2011;
Lieder & Griffiths, 2020), suggesting that no one brain can
solve all cognitive tasks optimally. Previous works have shown
how specific trade-offs between functional goals are appar-
ent in the design of neuronal mechanisms at several levels.
Those include trade-offs such as speed-accuracy in decision
making (Ivanoff, Branning, & Marois, 2008; Wenzlaff, Bauer,
Maess, & Heekeren, 2011) and robustness-efficiency of neu-
ronal code (Pryluk, Kfir, Gelbard-Sagiv, Fried, & Paz, 2019).
Understanding the brain’s architecture in terms of trade-offs
has the potential to uncover the core computations that neu-
ronal circuits evolved to serve (Pallasdies, Norton, Schleimer,
& Schreiber, 2021).

Pareto optimality theorem suggests that for an organism (or
system) that needs to optimize several competing tasks, all
optimal solutions lie in the convex-hull of the solutions that op-
timized those tasks (called archetypes)(Shoval et al., 2012).
This strong geometrical constraint limits the solution space
- with two tasks, the Pareto front is a line, with three tasks
it is a triangle, and so on... One can then reverse this ar-
gument - If a high-dimensional dataset is structured into a
low-dimensional polytope, the vertices of this convex-hull may
represent archetypes optimizing specific tasks. Under this
framework, individual differences represent different balanc-
ing choices between the optimization of competing tasks. The

Pareto Task Inference (ParTI) method (Hart et al., 2015) has
been fruitful in employing this rationale to extract the tasks and
trade-offs driving biological organisms (Tendler, Mayo, & Alon,
2015; Korem et al., 2015). In this work we map the possible
tradeoffs between cognitive goals.We applied Pareto analysis
on individual differences in the functional connectivity patterns
between predefined cortical networks (Van Den Heuvel & Pol,
2010; Yeo et al., 2011) to find the competing computational
goals of human brain functional connectivity.

Archetype 1 - Weak & Local Connectivity

Archetype 2 - Hierarchical Connectivity Archetype 3 - Strong Perceptual Coupling

Figure 1: Individual differences in functional connectivity are
explained by a trade-off between three archetypal connec-
tomes. The projection of the functional connectomes on the
first two PCs and re-projection of the archetypes.

Results
Human functional connectivity data is well described by
a triangle with three archetypes We analyzed fMRI rest-
ing state data of 1200 healthy young adults from the Human
Connectome Project (HCP(Van Essen et al., 2013)). We cal-
culated the pairwise Pearson correlations between the mean
BOLD signal timecourse of each of the 17 cortical networks
(defined by Yeo et al.(Yeo et al., 2011)) to obtain 136 con-
nectivity features. Next, we applied the Pareto Task Inference
method (ParTI (Hart et al., 2015)) on the connectivity features
of all individuals. We found that a triangle with 3 archetypes
fits the data well (t-ratio test, p < 10−4). We note that this re-
sult is robust to preprocessing pipeline, cortical parcellations,
fMRI data format, scan-rescan locations, and Pareto simplex
algorithm. If the Pareto assumption is correct, each archetype
of a specific connectivity pattern represents a core cognitive-



computational goal that the functional connectivity aims to op-
timize.

Figure 2: The connectomes of individuals near the three
archetypes show distinct topological properties.

Individuals near the three archetypes have distinct
connectivity topology, cognitive, psychiatric and demo-
graphic characteristics. To better understand the trade-offs
that induce the triangular structure, we analyzed the connec-
tivity patterns of the three archetypes. We found three distinct
computational patterns: 1. Local, inter-network computations
2. A hierarchical structure of two computing clusters linked by
a central hub and 3. A densely connected perceptual clus-
ter linked through several links to a second cluster of higher
cognitive function (Fig. 1). These connectivity patterns sug-
gest specific roles of the different archetypes: Archetype 1
involves lower cognitive function and processing, archetype 2
involves goal-directed cognitive function (Keller et al., 2023),
and archetype 3 involves integration of information and mem-
ory (Westphal, Wang, & Rissman, 2017; Vatansever, Menon,
Manktelow, Sahakian, & Stamatakis, 2015). We further ex-
tracted the functional connectomes of 10% of the individu-
als that are closest to each of the archetypes to compute
graph measures for these networks (Fig. 2). We found that
individuals near archetype 1 have lower average weighted
degree indicative of lower energetic cost (Tomasi, Wang, &
Volkow, 2013). We found that archetype 2 has a tree-like
structure, indicating a more hierarchical structure compared
to archetypes 1 and 3 as indicated by the graph radius to di-
ameter ratio.Finally, archetype 3 is characterized by a more
dense all-to-all connected network as indicated by the global
efficiency (Latora & Marchiori, 2001) of the graph. We further
used enrichment analysis(Hart et al., 2015) on a set of be-
havioral, demographic and psychiatric features described in
the HCP dataset. We found that archetype 1 was enriched
with high self-reported aggression and hostility, high impulsiv-
ity, and higher scores for antisocial behavior. Archetype 2 was
enriched with higher agreeableness and higher performance
in sustained attention task. Lastly, archetype 3 was enriched
with higher accuracy and slower response times in memory
tests (but which did not pass an FDR correction).

Brain connectivity patterns during task engagement
further characterize the optimized cognitive goals

If a location on the Pareto front of brain connectivity pat-

Figure 3: The effects of task condition on locations within the
Pareto optimal triangle. Contours show 50% high-density re-
gions of the population distribution in each condition.

terns reflects a specific balance between competing cognitive
functions, one would expect that engaging in a cognitive task
will require reconfiguration of the network to best fit the de-
mands of the new context. Therefore, the connectivity pat-
terns of individuals within a specific task can indicate the func-
tion of the different computational goals (archetypes). To that
aim, we computed the functional connectivity patterns for HCP
participants during the EMOTION task with its two conditions
(Face/Shape) and the LANGUAGE task with its two conditions
(Story/Math). We found that the distribution of participants’ lo-
cation within the triangle varied between the four conditions
(Fig. 3). In the EMOTION task, We found that distances
from archetype 3 were farther away compared to resting-state
and data mainly resides near the archetype 1 - archetype 2
edge. On this trade-off axis, there was a significant shift to-
wards archetype 1 and away from archetype 2 in the emo-
tional condition blocks compared to the neutral condition. For
the LANGUAGE task we found that the distances to archetype
1 significantly decrease indicating a rise in its importance. In
addition, the trade-off between archetype 2 and archetype 3
was significant, with a closer distribution to archetype 2 in the
math condition compared to the story condition (p < 10−8 for
all comparisons with Mann-Whitney test).

Discussion

This work probes the computational goals and trade-offs in
the functional organization of the human brain, as depicted by
resting-state cortical functional connectivity. Our results sug-
gest that individual differences in the brain’s functional con-
nectivity stem from different balancing choices between com-
peting computational goals. As such, they provide a new inte-
grative perspective over the functional role of individual differ-
ences in macroscale brain activity patterns.
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