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Abstract
Humans’ ability to spontaneously detect symbolic structures is
often considered to be essential to the acquisition of language
and music. Prominent theories postulate that core, innate and
internal mechanisms, like “merge” (Chomsky) or “neural re-
cursion” (Dehaene), are foundational to this feat. Here we
tested the alternative hypothesis that the ability to detect sym-
bolic structures emerges from generic statistical learning op-
erating onto external naturalistic inputs, that are structured
in themselves. We focused on auditory stimuli, for which
a wealth of experimental protocol questions structure detec-
tion. First, we exposed a self-supervised auditory model to
a dataset merging music, speech and environmental sounds.
Second, we exposed them to classical neuroscience experi-
mental protocols and evaluated the models’ ability to perform
zero-shot detection of regularities, including algebraic struc-
tures. Like humans, training brought models to detect (1) re-
peated sequences, (2) probabilistic chunks and (3) algebraic
structures, (4) with diminished performance for structures of
increasing complexities. Furthermore, we show that this abil-
ity was a direct consequence of self-supervised learning: the
more the models are exposed to natural sounds, the more
they spontaneously detect increasingly complex structures.
Overall, we demonstrate that the emergence of the struc-
ture detection need not require a dedicated internal mech-
anism: rather, self-supervised learning operating on ex-
ternal sensory inputs being sufficient for the emergence
of internal computations capable of detecting regular pat-
terns such as algebraic structures.
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Approach
The neural process underlying the human ability to detect
symbolic structures, such as syntax in speech and geomet-
rical symmetries in drawings remain unknown. Consequently,
a variety of minimalist protocols have been proposed to test

these views by isolating the brain and behavioral bases of
structure building. To recapitulate these findings, we propose
a novel approach, emphasizing models that learn from natu-
ralistic stimuli and test their ability to detect artificial structures
over a wide range of classical experimental protocols from the
literature.
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Figure 1: Diagrams of the model, measurement of the con-
trastive loss and structure of inputs.

Specifically, we pretrained a series of Wav2vec2.0 (Baevski
et al. (2020)) deep neural models with self-supervised
learning, to implicitly learn the latent structure of natural
sounds. The pretraining dataset combines three different
datasets: speech (Librispeech), music (FMA), and environ-
mental sounds (Audioset from which we removed musical and
speech sounds). Models are pretrained for 100 000 steps with
base parameters (Fig.1). We then tested the model ability to
perform structure detection at different training time on four
experimental paradigms (Fig.2 A,D,G).

The experimental paradigms were all merged in a common
framework, where a random sequence (Rand) was followed
by a structured regular sequence (Reg), followed by another
random sequences. For each sound, we measured the model
surprise to each sound elements (tones or syllables). This
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Figure 2: Testing structure detection and its emergence in three experimental protocol. First column: the three experimental
paradigms. A: Words formed by three syllable randomly alternate between themselves, generating a regular stream of syllable.

D: repetition of complex tones sequences. G: repetition of binary algrebraic tones sequences. Second column, B,E,H:
contrastive loss of the model for each sound element in the stream. The contrastive loss decreases as soon as the repeated
elements appear a second time in the regularity. The repetition period is termed cycle. Third column, C,F,I: difference of the

contrastive loss on the Rand versus Reg stream as a function of the network pretraining.

surprise was the contrastive loss, computed by masking 20
ms (50Hz) latent vectors whose receptive field overlap with the
sound element. If the model detected the sound structure, its
surprise should progressively decrease during the regular se-
quence and suddenly peak at the onset of the second random
sequence. To study the emergence of structure detection, the
analysis was replicated on checkpoints logarithmically span-
ning the models pretraining.

Results We first investigated the models’ ability to chunk
sounds, first in speech and then sequences of tones. For
speech, we replicated the experiment of Saffran et al. (1996),
which demonstrated that 8-month-old children rapidly and
spontaneously detect 3-syllable words in a stream of sylla-
bles. The stimulus switched from a random stream of syllables
to a regular stream composed of successive 3-syllable words
(Fig.2 A). During the regular stream, the model contrastive
loss dropped progressively on the second and third syllables
of each words (Fig.2 B). This demonstrates that the model was

performing in-context spontaneous discovery of words. Re-
markably, this ability emerged progressively during pretraining
(Fig.2 C). Structure detection was also found for complex tone
sequences investigated by Barascud et al. (2016) (Fig.2 D).
Indeed the model contrastive loss dropped as soon as a series
of 50-ms tones was repeated (Fig.2 E). The dynamics of the
loss mirrored the human ability to optimally detect the embed-
ded structure, as found by Barascud et al. Remarkably, struc-
ture detection emerged during pretraining (Fig.2 F). Finally, we
tested if the model uses the sequence algebraic patterns to
facilitate their detection. If this was the case, sounds with sim-
pler structures should be discovered faster and more easily
than sounds with complex structures. We thus studied binary
tones sequences of increasing Language of Thought (LOT)
complexity as introduced by Al Roumi et al. (2023) (Fig.2 G).
The model was able to discover all structures (Fig.2 H), but
this ability emerged earlier for simple sequences during pre-
training (Fig.2 I).

The results demonstrate that structure detection is an



emerging property of a self-supervised model, resulting from
the confrontation of generic-purpose statistical learning with
the underlying structure of the outside world. Such models
thus constitute a unifying computational framework for study-
ing the emergence of structure discovery in neural networks.
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