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Abstract
In tasks governed by succinct rules, human learning is
more robust when related examples are blocked, but in
the absence of such rules, interleaving is more effective.
To date, no neural model has simultaneously captured
these seemingly contradictory effects. Here we show that
these effects spontaneously emerge in neural networks
capable of “in-context learning” (ICL). In both language
models and metalearning networks, ICL explains the ob-
served blocking advantage while concurrent in-weight
learning explains the interleaving advantage.
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Introduction
Human learning is sensitive to “curriculum” — the particular
examples used to demonstrate a task and the order in which
they are presented. When the task is governed by simple
rules, humans benefit when related trials are blocked over
time (Dekker, Otto, & Summerfield, 2022), but when it isn’t, hu-
mans benefit when trials are randomly shuffled or interleaved
over time (Noh, Yan, Bjork, & Maddox, 2016).

Classic neural network models of memory predict an in-
terleaving advantage (McClelland, McNaughton, & O’Reilly,
1995), but a blocking advantage can also emerge in neural
network models of gating and working memory in the pre-
frontal cortex (Rougier, Noelle, Braver, Cohen, & O’Reilly,
2005; Russin, Zolfaghar, Park, Boorman, & O’Reilly, 2022;
Flesch, Nagy, Saxe, & Summerfield, 2022). However, no neu-
ral network model has explained how both of these effects can
coexist in a single network, nor why they would depend on the
presence of rule-like structure. Furthermore, previous mod-
els have been narrowly specialized to perform specific tasks,
making it unclear whether their underlying principles are gen-
eral enough to scale to real-world scenarios.

Language models (LMs), neural networks that are trained
to predict the next word on large datasets of text (Brown et al.,
2020), have recently demonstrated impressive performance
on many real-world tasks (Bubeck et al., 2023). Many of these
sophisticated behaviors depend on “in-context learning” (ICL):
the ability to learn new tasks from a few examples given in
their context window without weight changes. ICL can be dif-
ferentiated from the usual in-weight learning (IWL) in neural
networks, where weights are updated by backpropagating er-
rors. ICL abilities spontaneously emerge in LMs trained on
next-word prediction, but can also be acquired through met-
alearning (von Oswald et al., 2023), which is thought to be a
key aspect of the functioning of the prefrontal cortex and basal
ganglia (Wang et al., 2018; O’Reilly & Frank, 2006). In either

case, the trained network can be understood as implementing
an ICL algorithm in its forward activation dynamics that is fun-
damentally distinct from the IWL algorithm that was used to
train the network in the first place (Chan et al., 2022).

These two separate ICL and IWL algorithms can have dif-
ferent learning properties, thus offering a novel perspective on
how two different learning “systems” (Ashby & Maddox, 2011)
can be implemented by a single network. We hypothesized
that this distinction between ICL and IWL might explain how
both the blocking and interleaving advantages could coexist
within one neural network. In particular, we hypothesized that
ICL, which has been shown to generalize well in the presence
of rule-like or compositional structure (Lake & Baroni, 2023),
would explain the blocking advantage, while IWL, which is
known to suffer from catastrophic forgetting when trials are
blocked, would explain the interleaving advantage. We inves-
tigated this hypothesis by testing both LMs and metalearning
neural networks on a task shown in a recent experiment to
elicit a blocking advantage in humans (Dekker et al., 2022).

Task Design
In the original task (Dekker et al., 2022), participants learned
the 2D coordinates of reward locations associated with partic-
ular cues. Each cue was one of five animals shown in one of
five colors. The reward locations were systematic, with color
determining the x-coordinate and animal determining the y-
coordinate or vice versa. 9 of the 25 cues were used for train-
ing, and the other 16 were used to test generalization. The ex-
perimenters manipulated the training curriculum and showed
that participants generalized better with an Aligned curricu-
lum than a Misaligned one, and better with a Blocked cur-
riculum than an Interleaved one (see Figure 1A). However,
Dekker et al. (2022) did not include a condition where the task
was not governed by simple rules, where participants might
instead be predicted to show an interleaving advantage. We
therefore performed an additional manipulation to prevent the
application of simple rules, by rotating the space of reward lo-
cations such that a change in either color or animal resulted
in changes to both coordinates (see Figure 1B). Text-based
versions of both the Unrotated and Rotated tasks with all four
conditions were used to test our hypotheses in both pretrained
LMs and metalearning neural networks (see Figure 1C).

Results
ICL in LMs
We predicted that LMs with advanced ICL abilities would show
a blocking advantage on the Unrotated task, but would not be
capable of solving the Rotated task in context.



Figure 1: (A) Task from original experiment (Dekker et al., 2022). Cues used for training were presented in the order shown
by overlaid numbers. (B) Rotated task. (C) Text-based version. (D) LM results. ICL explains the blocking advantage on
the Unrotated task, and fails on the Rotated task. (E) Metalearning results. The blocking advantage was observed for few-shot
generalization accuracy in the Unrotated task, while the interleaving advantage was observed after finetuning in the Rotated task.
(F) Performance was worse after finetuning in the Rotated task when trials were blocked because IWL suffers from catastrophic
forgetting: cues trained in the first block (“TrainA”) are forgotten during the second block (“TrainB”).

We tested two LMs, GPT-3.5 (gpt-3.5-turbo-instruct; Brown
et al., 2020; Ouyang et al., 2022) and Llama 2 (70 billion;
Touvron et al., 2023), on all conditions. As expected, ICL al-
lowed both LMs to generalize well in the Unrotated task, but
not in the Rotated task (see Figure 1D). Furthermore, both
LMs exhibited the same blocking advantage observed in hu-
mans, generalizing better in the Aligned than the Misaligned
condition, and in the Blocked than the Interleaved condition.

This pattern of results is consistent with our hypothesis that
ICL would be capable of solving tasks governed by rule-like
structure, and would exhibit a blocking advantage on such
tasks. We also predicted that when ICL fails, IWL would be-
come critical for solving the task, as more ICL errors would be
backpropagated to the weights of the network. In this case,
an interleaving advantage might result due to catastrophic for-
getting (McClelland et al., 1995). As it is expensive to activate
IWL in LMs for finetuning, we chose to investigate this hypoth-
esis with smaller neural networks in a metalearning setting
where both pretraining and finetuning can be controlled.

ICL and IWL in Metalearning Networks

To study the interplay between ICL and IWL, we adopted a
metalearning framework where a network learned how to in-
context learn by training on a distribution of tasks (“episodes”).
New tasks were generated by randomly permuting the partic-
ular locations of the colors and animals. The network was
trained on 12,000 such episodes. 100 episodes were held out
for validation and 10 episodes were held out for testing.

To investigate how the blocking advantage exhibited by ICL
in the LMs might interact with IWL, the metalearned ICL algo-
rithms were trained on unrotated episodes where trials were

blocked across the context window. Thus, we interpreted the
metalearning stage as simulating the experiences shaping the
biases present in participants coming into the experiment,
but subsequent ICL and IWL on the specific task as simu-
lating the learning they demonstrated during the experiment
itself. In this latter stage, trials were either blocked or inter-
leaved across the context window, and the metalearned net-
work could learn in context in its forward activation dynamics,
or in weights via the backpropagation of errors.

As expected, when both ICL and IWL were active within a
single network, it reproduced the blocking advantage on the
Unrotated task and the interleaving advantage on the Rotated
task (see Figure 1E). As in the LMs, the blocking advantage
observed on the Unrotated task was due to ICL, which al-
lowed the network to generalize perfectly in the few-shot set-
ting when trials were blocked, but struggled to do so when they
were interleaved. In the Rotated task, ICL produced more er-
rors, leading to increased IWL when these errors were back-
propagated during finetuning. In this case, an interleaving
advantage emerged because catastrophic forgetting occurred
when trials were blocked (see Figure 1F).

Conclusion

In conclusion, our work shows that the duality between ICL
and IWL offers a novel perspective on the curriculum ef-
fects observed in human learning. The blocking advantage
emerges because the presence of rule-like structure allows
ICL engagement, while the interleaving advantage emerges
because the absence of such structure triggers IWL, which is
susceptible to catastrophic forgetting.
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