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Abstract
We investigate the relationship between visual judgment
and language expression in material perception to un-
derstand how visual features relate to semantic or cat-
egorical representations. We use deep generative net-
works to construct an expandable image space to sys-
tematically sample familiar and unfamiliar materials. We
compare the perceptual representations of materials from
two tasks, visual material similarity judgments, and ver-
bal descriptions, and discover a moderate correlation be-
tween vision and language within individuals. However,
we also find a gap between these two modalities, signify-
ing that while verbal descriptions capture material quali-
ties on the coarse level, they may not fully convey visual
nuances. Furthermore, we examine the image represen-
tation of materials derived from various data-rich neural
network models and demonstrate that the distilled image
features from these models have the potential to capture
the human representation of materials.
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Introduction
Recognizing materials and estimating their properties (e.g.,
softness, edibleness) from visual input is essential for humans
to plan interactions with the environment (Fleming, 2017).
Along with vision, language allows us to communicate relevant
information about the materials. Furthermore, probing the
connection between visual judgment and semantic descrip-
tion may unveil communicable features in materials. Although
we can visually discriminate various materials, we might find
it challenging to effectively describe their appearances with
words. To what extent do words encapsulate the richness of
visual material perception? We answer this by measuring ma-
terial perception with visual similarity judgments and semantic
descriptions using AI-generated images. When contrasting
the representations derived from behavioral results with those
from pre-trained data-rich vision models, we observed align-
ment and misalignment between human material perception
and the task-agnostic deep features extracted by these mod-
els.

Methods
Space of Morphable Material Appearance We developed
an unsupervised image synthesis framework to create an ex-
tensive range of familiar and unfamiliar materials in a control-
lable manner. Our framework is based on StyleGAN2-ADA
(Karras et al., 2020), which captures the statistical regularity
of the images with its multi-scale generative network (G) and
layer-wise latent space (W ). We transferred the pre-trained
StyleGAN2-ADA model from a large dataset Dsoap (8085 pho-
tos of 60 soaps) to the smaller datasets Drock (3180 photos
24 rocks/crystals) and Dtoy (1900 photos of 15 squishy toys),
via separately applying end-to-end fine-tuning (Figure 1A).
As a result, the Soap Model (Wsoap, Gsoap) turned into Rock

Figure 1: Synthesis pipeline for morphable material appear-
ances. (A) Transfer learning from photographs of one material
(soap) facilitates synthesizing other materials (rocks/crystals)
and (toys). (B) Illustration of cross-category material morph-
ing. (C) Illustration of the Space of Morphable Material Ap-
pearance. (D) Examples of synthetic stimuli used in the psy-
chophysical experiments.

(Wrock, Grock) and Toy Models (Wtoy, Gtoy), and can synthe-
size images of corresponding materials. We also created am-
biguous materials by linearly interpolating between the latent
codes of two materials (e.g., wsoap and wrock) while also inter-
polating corresponding material generators’ parameters (e.g.,
Gsoap and Grock) (Figure 1B). This enables us to build an ex-
pandable Space of Morphable Material Appearance, which in-
cludes three original materials (i.e., soap, toy, rock) and three
morphed materials at morphing midpoints (i.e., soap-to-rock,
rock-to-toy, and soap-to-toy) (Figure 1C).

Psychophysical Experiments We sampled 72 stimuli from
six image categories of material (12 from each) from the
Space of Morphable Material Appearance (Figure 1D). We
conducted two behavior tasks within individuals: (1) Multi-
ple Arrangement (MA): participants (N=16) arranged mate-
rials based on the similarity judgment of material properties
(Kriegeskorte & Mur, 2012); (2) Verbal Description (VD): the
same participants described the same images with free-form
text input from five aspects: material name, color, optical prop-
erties, mechanical properties, and surface texture (Figure 2A).

Results
Comparing visual judgment with verbal description
Within each participant, we compared Representational Dis-
similarity Matrices (RDMs) between the visual judgment (i.e.,
Vision RDM) and verbal description (i.e., Text RDM) results,
by applying the Representational Similarity Analysis (RSA)
(Figure 2B). For each participant, a Vision RDM is created
based on the Euclidean distances of pairwise comparisons in
MA, and a Text RDM by encoding the images’ text descrip-
tions with a pre-trained large language model and computing



Figure 2: Behavioral and modeling results. (A) Illustration of behavioral experiments: visual material similarity judgment via
Multiple Arrangement, and Verbal Description (B) Individual and group average perceptual RDMs (Top: Vision RDMs, Bottom:
Text RDMs). The Spearman’s correlation (rs) between the corresponding Vision and Text RDMs are annotated in the box
below. (C) Representational similarities between individual participants’ visual judgments and selected pre-trained data-rich
models. Left: RDM of 72 stimuli based on latent feature extracted from a pre-trained vision encoder: OpenCLIP-ViT-L/14. Right:
Spearman’s Correlation between each participant’s Vision RDM or the model’s image-feature RDM and the group average Vision
RDM. (D) Optimal transportation plans (Γ). The purple diagonal indicates the perfect alignment on the image-to-image level.

their cosine distances (text embedding from CLIP (Radford et
al., 2021) is shown as the main result). We found that all of
the participants’ verbal responses exhibited a significant cor-
relation with their own MA behavior but with substantial indi-
vidual variances (min Spearman’s correlation rs = 0.10, max
rs = 0.52, all p < 0.001, FDR-corrected). We observed a
stronger correlation when comparing the group average Vi-
sion and Text RDMs (rs = 0.74, p < 0.001).

We scrutinized the more nuanced-level alignment between
the two perceptual spaces using the unsupervised alignment
method, Gromov-Wasserstein Optimal Transport (GWOT)
(Kawakita, Zeleznikow-Johnston, Tsuchiya, & Oizumi, 2023).
To quantify the structural similarity between group average Vi-
sion and Text RDMs, GWOT yields the optimal transportation
plan matrix, Γ. Each element in Γ indicates the probability
of a sample in one similarity structure corresponding to an-
other in the other similarity structure. As shown in Figure 2D
(Left), the optimal Γ significantly deviates from being a diag-
onal matrix. Misalignments tend to occur within images syn-
thesized from the same material generator (e.g., within soaps)
or between the morphed materials (e.g., soap-to-toy) and the
materials they morphed from (e.g., soap and toy). Participants
could use similar words to describe samples within each mate-
rial category that exhibit shared visual attributes (e.g., translu-
cency). Our analysis suggests that visual judgment and lan-
guage are relatively consistent at the coarse categorical level
but the nuanced visual difference between material samples
cannot be precisely described with words.
Comparing human visual judgment with models How do
we find the features that are “missing” from the verbal descrip-
tions? Recent weakly-supervised and self-supervised mod-

els show the plausibility of narrowing the behavioral difference
between human and machine vision (Geirhos et al., 2021).
Here, we assessed whether the representations learned by
these pre-trained models align with human visual material
judgments. If their image-feature representations approximate
human perception, these computational models may provide
insights into searching vision-specific features in material rea-
soning tasks. We confronted various pre-trained models (e.g.,
visual-semantic models OpenCLIP (Ilharco et al., 2021)) with
our stimuli and obtained material similarity representations
based on the models’ deep image features (Figure 2C Left).
Using both RSA and GWOT, we found that the image-feature
representations from the tested models moderately correlated
(Figure 2C Right) with human visual judgment at the level of
coarse categories, yet precise mapping at the image level
is still lacking (Figure 2D Right). Fitting a linear regression
model, we found that joining the participant’s own Text RDM
with the image-feature RDM (e.g., OpenCLIP-ViT-L/14) signif-
icantly improves (p < 0.001 for all participants) the prediction
of the participant’s own Vision RDM. This implies that the im-
age features distilled from such a model may contain relevant
visual information about materials.

Conclusion
Using a novel image synthesis framework and two behav-
ioral tasks, we found that human semantic representation of
materials is crucial in their visual similarity judgments. How-
ever, there is a gap in using words to capture the nuanced
visual differences between diverse material samples. Data-
rich computational models that capture human visual material
judgment may provide cues explaining visual nuances.
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