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Abstract

Visual representations become progressively more ab-
stract along the cortical hierarchy. These abstractions
allow us to define notions like objects and shapes, and
more generally organize sensory experience. Low-level
regions, by contrast, represent simple local features of
their inputs. How do the abstract, spatially non-specific,
low-dimensional summaries of sensory information in
high-level areas flexibly modulate the spatially specific
and local low-level sensory representations in appropri-
ate ways to guide attention, context-driven, and goal-
directed behaviors across a range of tasks? We build a bi-
ologically motivated and trainable neural network model
of dynamics in the visual pathway, incorporating lateral,
feedforward, and local feedback synaptic connections,
and excitatory and inhibitory neurons, together with long-
range top-down inputs conceptualized as low-rank mod-
ulations of the input-driven sensory responses by high-
level areas. We study this model in a visual counting task
with images containing several novel 3D objects, each
composed of new shape, size, and color combinations.
First cued by a visual input depicting one object of a par-
ticular color or shape, the model uses its remembered
representations of the cue to then modulate the percep-
tual and counting process for the subsequent image to re-
port the number of objects with the cued color or shape.
We show that this model is able to accurately and general-
izably count novel combinations of novel objects with the
cued attribute. We examine the neural representations
that make this possible, shedding light on the nature of
top-down contextual modulation of sensory processing
and generating predictions for experiments.

Keywords: context; attention; convolutional RNNs; feedback;
cued-visual search;

Introduction

We readily use abstract rules and cues to modulate our sen-
sory perception. These forms of modulation include high-level
feature-based attention (find Waldo; count the number of hoop
shots, etc.), priming, cueing, and other contextual modula-
tions. Such modulation allows us to locate items of interest
more rapidly or accurately, and to follow directions or perform
goal-directed computations. Understanding how and where
sensory-driven neural responses and top-down processes in-
teract has been a longstanding goal in computational cogni-
tive neuroscience (Lamme & Roelfsema, 2000; Friston, 2005;
Summerfield & De Lange, 2014; Bar et al., 2006). Exten-
sive psychophysical experiments (Wolfe & Horowitz, 2004)
and studies of neural gain modulation (Gilbert & Li, 2013;
Gilbert & Wiesel, 1992) shed light on the phenomenon, how-
ever a fundamental mechanistic and conceptual problem re-
mains open: what is the nature of the “modulatory homoncu-
lus” that decides, given a general and abstract cue, goal, or
context, which low-level representations to modulate, and in
what combination and in which topographic part of the input
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Figure 1: Low-rank modulations drive context aware pro-
cessing. (a) We present a biologically motivated feedback
model. Layers in the model are parameterized by recurrent
Excitatory (E) and Inhibitory (1) neural populations that interact
bidirectionally with a higher-order layer in a low-rank manner.
(b) We train and evaluate this model within a cued-delayed-
visual search paradigm. The model is tasked with extracting
a “rule” from a visual cue input, presented first. The cue is re-
moved, and the visual scene provided next, in which the model
must count the number of objects that possess the cued prop-
erty.

space, to sharpen the desired aspects of perception? We lack
a cohesive computational framework to link these two levels of
representation.

In this work, we combine the known architectures of vi-
sual cortex with advances in machine learning to introduce
a biophysically-inspired, stimulus-computable model of the
modulation of sensory representations by abstract task rep-
resentations. We consider this model in the context of a
challenging cued-delayed-visual search task. We start with
a model endowed with several relevant details from biologi-
cal circuits, including separate (tuned) excitatory and (weakly-
tuned) inhibitory populations, lateral inhibition, inter-area feed-
back, and neuron types with distinct learnable time constants
per type. We train our model with gradient descent to solve a
(parametrically generated) cued visual search task in which
the model has to count and report the number of geomet-
ric objects in a scene which possess a cued visual prop-
erty (color, shape, or a conjunction of the two). Our model
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Figure 2: Interpreting model dynamics in color cue-guided trials For both (a) and (b) we perform dimensionality reduction on
the recurrent states of the last layer in our model. (a) Trial-averaged dynamics reveal the emergence of numerosity information
over time. For illustration purposes we pick 256 random trials for the first three classes. (b) Specifically analyzing the effect of
disparate cues (here, Blue and Gray) on a variety of scenes. Despite widely varying bottom-up inputs from the different scenes,
model dynamics are modulated in such a way that the final network states reflect consistent numerosity information.

learns to solve this task, outperforms state-of-the-art standard
DNNs and LLMs, while being interpretable and having orders
of magnitude fewer parameters. We believe that our approach
holds great promise for generating several testable hypothe-
ses and predictions for neuroscience.

Methods

Task and Stimuli. We study context-guided sensory pro-
cessing within a cued visual search paradigm. We build input
images based on the CLEVR (Johnson et al., 2017) dataset,
a visual reasoning benchmark, and with it parametrically
generate a counting task. Inputs are resized to a resolution of
128 x 128px. We render “cues” of three varieties (colors, 3D
shapes with neutral colors, and colored 3D shapes) uniformly
at random (Figure 1b). During model training and evaluation,
we pair scenes with cues and task the model with counting
the number of objects in the scene that obey the properties of
the cue. By construction, there can be at most 9 objects in
the scene consistent with the cue (0 is a valid answer when
the scene does not contain any cue-consistent object).

Model. Figure. 1a illustrates our sensory perception back-
bone. Sensory layers incorporate relevant biological circuit
blueprints, including Dale’s law, lateral and top-down projec-
tions, as well as cell-type specific learnable neuronal time con-
stants. Sensory layers additionally feed into a higher-order
layer which computes a low-rank modulatory input (outer
product of two rank one vectors) back into the sensory stream.
The model is trained end-to-end on the visual counting task
via gradient descent. The excitatory neurons of the last layer
are transformed by a readout layer that is supervised with the
true count (from 0-9) of cue-consistent objects in the scene.

Results & Discussion

Implicit models of context-guided visual processing fail
to generalize. We evaluate a simplified version of our model
without the low-rank modulations to understand if explicit mod-
ulation dynamics are necessary for this particular task. While
such a baseline model learns to perform the task during train-
ing, evaluation on a held-out set of scenes was 73% accurate,
and evaluation for held-out cues dropped significantly to 46%.
We note that these experiments were only performed for color
cues. Baseline models failed to learn the other cue conditions.

LLMs struggle with zero-shot visual cueing If smaller
models struggle to generalize on this task, what about larger
models? In an in-context manner (with a number of sample
cues, images, and correct answers provided, followed by a
new cue and image), we evaluated GPT-4’s ability to solve this
cued-visual task. Out of 30 random samples from our held-out
dataset, GPT-4 was 36% accurate.

Low-rank modulations guide network dynamics and
performance appropriately. We test and verify the ability
of our proposed low-rank modulations and model to learn and
perform well on all cue conditions. Specifically, our models
were 89% accurate on color cues, 74% accurate on shape
cues, and 66% accurate on conjunctive cues. We compute
the chance performance to be around 30%. Visualization of
our best performing model’s trial-by-trial dynamics is shown
in Figure. 2.

In conclusion, we introduce a feedback model of flexible
context guided sensory processing. We show that models of
this variety yield higher performance on a challenging visual
counting task and also present a conceptual understanding for
how bottom-up inputs are modulated by top-down processes.
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