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Abstract
Exploration in sequential decision problems is a compu-
tationally challenging problem. Yet, animals exhibit ef-
fective exploration strategies, discovering shortcuts and
efficient routes toward rewarding sites. Characterizing
this efficiency in animal exploration is an important goal
in many areas of research, from ecology to psychology
and neuroscience to machine learning. In this study, we
aim to understand the exploration behavior of animals
freely navigating a complex maze with many decision
points. We propose an algorithm based on a few sim-
ple principles of animal movement from foraging studies
in ecology and formalized using reinforcement learning.
Our approach not only captures the search efficiency and
turning biases of real animals but also uncovers longer
spatial and temporal dependencies in the decisions of
animals during their exploration of the maze. Through
this work, we aspire to unveil a novel approach in cog-
nitive science of drawing interdisciplinary inspiration to
advancing the field’s understanding of complex decision-
making.
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Introduction
Understanding the exploratory and search behavior of hu-
mans and animals is a key focus in many scientific fields. The
dynamics of exploration in neuroscience have been studied
across mostly shorter temporal scales: from characterizing
choice behavior in bandit tasks or studying head turns on en-
countering a novel object, but few studies have tried to model
animals’ exploratory behavior in larger or more complex envi-
ronments. This study aims to fill that gap. The natural world
is full of complex environments that require animals to nav-
igate through intricate paths. Neuroscience experiments of-
ten fall short of replicating that complexity, limiting what we
can learn about true animal behavior. This is in contrast to
the field of spatial ecology, which has focused extensively on
studying animal movement in naturalistic settings, from prey
hunting in plain fields to bird migrations across oceans. How-
ever, there is a gap in exchange of ideas between ecology and
neuroscience, partly because of the differences in the scale of
investigation of the two fields.

With advanced animal tracking, there is now an increase in
the use of complex environments with many choice points to
study animal behavior. One such experiment conducted by
Rosenberg, Zhang, Perona, and Meister (2021) involves ten
mice, each exploring a complex labyrinth for close to 7 hours
without any human interference. Animals had access to suf-
ficient food and water in the home cage but curiously, even
though the maze offered no explicit reward, animals continued
to enter and exit the maze throughout the night to explore the
maze. While this behavior supports the role of intrinsic motiva-
tion in driving animals to explore, the structure and remarkable
efficiency exhibited in their exploration strategies constitute a

perfect example of the complex and naturalistic behavior that
remains poorly understood in the behavioral sciences. In their
original paper, Rosenberg et al. (2021) characterized the ani-
mals’ exploratory behavior using a computational model com-
posed of four parameters that governed the probabilities of
actions at each junction. However, this model was tailored to
the specific dataset and maze layout. As such, it remains un-
clear if there are general computational principles capable of
explaining the efficiency of animal exploration in this and other
complex environments. Such principles should, ideally, also
relate to known tenets of animal movement in spatial ecology.

In this study, using the maze exploration data from
Rosenberg et al. (2021) as a case study, we built an explo-
ration agent based on a few simple principles of animal move-
ment from foraging studies and formalized using the frame-
work of reinforcement learning (RL). Our main hypothesis is
that, during exploration, animals rely on temporal abstraction
to circumvent the complexity of sequential decision-making,
giving rise to stereotyped action sequences. Computation-
ally, we express this hypothesis in terms of a temporally-
extended ε-greedy algorithm, recently proposed as a general
exploration framework in RL by Dabney, Ostrovski, and Bar-
reto (2020). Temporally-extended ε-greedy uses temporal ab-
straction to yield efficient exploration in a range of RL settings.
However, Dabney et al. (2020) only compared this algorithm
against perfect memory agents or neural networks, here we
test its ability to explain real animal behavior. Our work makes
a novel contribution to the field of cognitive science by provid-
ing a parsimonious characterization of the exploratory behav-
ior of animals in a complex maze.

Model

We formalize the problem of exploration in the current maze
as a Markov Decision Process (MDP). The set of states con-
stitutes all the 63 nodes at T-junctions, 64 end nodes and the
home node. At each of the 63 T-junctions in the maze, there
are 3 actions available to go left, right or back. The transition
probability matrix is deterministic and assumed to be known.
There is 0 reward throughout the maze.

Temporally-persistent ε-greedy exploration A common
strategy used in RL to promote exploration in sequential en-
vironments is ε-greedy. However, in a reward-free environ-
ment, relying on an ε-greedy strategy can be very inefficient
(Dabney et al., 2020). In ε-greedy, the probability of being
able to move away from one part of the environment to an-
other reduces exponentially with the number of steps required.
To tackle this, Dabney et al. (2020) proposed a temporally-
extended version of ε-greedy. Rather than sampling an action
at every time step, this algorithm instead samples a sequence
of actions and executes this “composite” action. These com-
posite actions, also known as options in the semi-MDP liter-
ature, abstract away the intermediate steps and allow flexi-
ble behavioral policies (Sutton, Precup, & Singh, 1999). The
temporally-extended ε-greedy strategy requires choosing an
exploration probability ε and an appropriate set of options O.
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Figure 1: (a) The semi-MDP framework (bottom) allows the length between timesteps to be variable in comparison to standard
MDP (top) and as such can support temporally extended actions. (b) If modeled as MDP, the agent has to choose an action
at every intermediate turn in the maze. (c) In εz-greedy model, based on a semi-MDP framework, the agent first chooses
a direction at random and samples an entire action-sequence and executes it in one go, abstracting away the decisions at
intermediate timesteps. (d) A random walk agent, simulated for 100 time steps, gets stuck in a small region of the maze. (e)
An exploration-bonus-based agent exhibits a very systematic behavior and performs very efficiently, however, at the expense of
requiring intensive computations. (f) An εz-greedy agent, in the same amount of time, covers a much larger portion of the maze
with minimal resources and generates efficient trajectories similar in structure to animals. Panel (a) adapted from Hutsebaut-
Buysse et al. (2022).

Then, as with vanilla ε-greedy, it samples an option w∈O with
probability ε or follows a baseline policy with probability 1− ε.
For pure exploration, we set ε = 1, so that the agent always
samples an option, eliminating the need to specify a baseline
policy and a learning algorithm.

We adopt the spatial version of temporally-extended ε-
greedy for our problem, called εz-greedy (Dabney et al.,
2020). εz-greedy constructs an option wan that takes the same
action a for n time steps and terminates. The complete set of
options O is made up of all such “action-repeats”, for all com-
binations of valid actions and durations where the duration n
is sampled from some distribution z. These “action-repeats”
allow an agent to persist in one direction and not get stuck in
a local region, in contrast to a vanilla ε-greedy agent. To test
εz-greedy on our data, we construct an appropriate set of op-
tions that encode a similar sense of directional persistence in
our maze environment. For the duration distribution, we use
the heavy-tailed Lévy distribution z(n)∼ n−µ with µ= 2. Being
heavy-tailed, it samples a lot of short steps and spends time
in one region but also has a non-zero probability to switch to
a different region when a large step size is sampled. Such
heavy-tailed distributions have been observed in many animal
foraging studies in ecology (Viswanathan et al., 1999).

Results

Exploration efficiency The εz-greedy model exhibits effi-
cient movement in the maze. We use the definition of ex-
ploration efficiency from the original study as the total number
of nodes visited Nhal f required to survey half the end nodes,
and define E = 32/Nhal f . An optimal agent with perfect mem-
ory visits the end nodes systematically without any repeats,
resulting in an efficiency of E = 1.0. A random agent with
no memory repeats a node before having visited all of them
results in an efficiency of E = 0.23 when simulated. The ex-
ploration efficiencies observed for animals lie in the middle of
the two, with an average of E = 0.39± 0.03. The εz-greedy

model gives an efficiency of E = 0.35 and accounts for 91%
of the variance observed in the animals’ efficiencies.

Turning biases The εz-greedy model also recovers the turn-
ing biases of animals. Data analysis showed animals exhib-
ited a strong preference, consistent across all animals, to go
forward at T-junctions and alternate at turns left and right. The
εz-greedy model recovered all the turning biases within ∼ 90%
of animals’ values. Rosenberg et al. (2021) had speculated on
the presence of these consistent biases in animals in their pa-
per, questioning if such rules are genetic. However, we show
that just adhering to the general principle of directional persis-
tence in an environment is sufficient to replicate these biases.

Our results show that a temporally-persistent agent cap-
tures the efficiency, the turning biases and many other as-
pects of mice behavior not included in this abstract. However,
its main strength lies in its interpretability. The exploration
movement patterns of humans and animals in open environ-
ments are known to be superdiffusive in nature and resemble
Lévy walks (Viswanathan, Da Luz, Raposo, & Stanley, 2011).
The success of εz-greedy model implies that mice exhibit su-
perdiffusive movement within the maze and are optimizing for
search efficiency. That is, once the animals have chosen to go
in a certain direction, they do not make decisions at intermedi-
ate turns but continue to persist in that direction. By segregat-
ing the learning process and the innate mechanical aspects
of a behavior, models like εz-greedy serve additional purpose
by aiding in the selection of the appropriate formulation of the
action space and the behavior policies. We now know that
an RL policy that considers a spatiotemporally flexible state-
action space is going to be more effective than the one trying
to learn the local turning rules. Finally, being able to execute
a temporally-extended option in this maze indicates that mice
can sample a “jump” in arbitrary directions, even when those
directions appear to be obstructed by the presence of maze
walls. This implies a high degree of flexibility in their spatial
decision-making and planning.
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