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Abstract
Unlike conventional deep neural networks, the human
brain has a myriad of direct connections from subcorti-
cal nuclei to all cortical areas. These enable fast informa-
tion transfer and facilitate hierarchical compositionality
but have not yet been explored in artificial systems. In
this work, we present the Shallow Hierarchical Artificial
Neural Network (SHANN), a novel brain-inspired architec-
ture with shallow connections from the input to all the hi-
erarchical processing layers. We show that SHANNs can
outperform shallow and deep networks in reconstruction
and classification tasks. Initial explorations reveal that
SHANNs use hierarchical compositionality to combine in-
formation from different levels of abstraction.
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Introduction
Deep neural networks (DNNs) with tens or hundreds of hid-
den layers achieve super-human performance in classification
tasks (LeCun, Bengio, & Hinton, 2015). However, the human
brain remains the most energy-efficient neural system (Yu &
Yu, 2017) and attains semantic knowledge in fewer abstrac-
tion levels (Lindsay, 2021). As such, the brain should serve
as inspiration to machine learning researchers.

In this work, we explore a novel brain-inspired architecture
for artificial neural networks with shallow and hierarchical con-
nections. Recent work has shown that hierarchical cortical
processing (Felleman & Van Essen, 1991) could be overly
simplistic in the light of the abundant forward and feedback
connections from subcortical nuclei to all areas of the cortex
(Tervo et al., 2016). This leads to a shallow interpretation of
the brain (Suzuki, Pennartz, & Aru, 2023), where the cortical
hierarchies are orthogonal to cortical-subcortical connections.
As way of example, the traditional interpretation of the ventral
visual processing in sequential stages from the retina to the
lateral geniculate nucleus (LGN) of the thalamus, visual cor-
tex areas V1, V2, V4, and finally inferior temporal lobe (IT),
must be challenged due to direct connections from LGN to
deeper visual cortex and IT (Siegle et al., 2021).

Disentangling depth and hierarchy

The main argument behind our proposal is that the high per-
formance achieved by DNNs originates in the hierarchical ab-
stractions that emerge in the deepest layers, regardless of
their actual depth. To facilitate the distinction, we define two
properties for a layer in a network. First, we define the depth
of a layer as the minimum number of forward passes from the
input through other layers required to reach it. Second, we de-
fine the hierarchy of a layer as the maximum possible number
of forward passes from the input through other layers to reach
it. In conventional DNNs, depth and hierarchy are equivalent.
Alternative architectures that use skip connections to solve the
vanishing gradient problem reduce depth while maintaining hi-
erarchy, although the disentanglement is lost when adding,

Figure 1: Architecture of a SHANN with 4 hidden layers. Each
layer is the concatenation of shallow connections from the in-
put and hierarchical connections from the previous layer.

e.g. ResNets (He, Zhang, Ren, & Sun, 2015), or aggregating,
e.g. DenseNets (Huang, Liu, Van Der Maaten, & Weinberger,
2016), copies of the values emerging from different depths.

Shallow Hierarchical Networks
In line with the interpretation of a shallow brain, we introduce a
new architecture which we call the Shallow Hierarchical Artifi-
cial Neural Network (SHANN). Its main innovation is the inclu-
sion of direct connections from the input to all hidden layers.
Therefore, SHANNs have a shallow structure with multiple hi-
erarchical levels (see Fig. 1). For a hidden layer j of size d,
the first din values are obtained directly from the input and the
remaining d −din are obtained from connections of the lower
hidden layer. Conventional DNN connections from layer j−1
to layer j are described by:

x j = f (d)(x j−1|θ j−1;b j−1;a), (1)

where x j is the activity of layer j and f is the result of an
affine transformation with weight matrix θ and biases b fol-
lowed by a non-linear activation function a. On the other hand,
a SHANN’s connections are given by:

x j = f (din)(xin|θin, j;bin, j;a) ⊕ f (d−din)(x j−1|θ j−1;b j−1;a)],
(2)

where ⊕ is the concatenation operator. The first term de-
scribes the shallow connections directly from the input xin,
and the second term describes the hierarchical connections
from the immediate lower level of the network. The output of
a SHANN is derived directly from the highest level in the hier-
archy following Eq. 1.

In Fig. 1 we show an example of a SHANN consisting of
4 hidden layers with increasing hierarchy but constant depth
of 1. Like conventional DNNs, SHANNs can achieve high lev-
els of abstraction in more hierarchical layers. However, the ad-
ditional direct connections from the input to all hidden layers
can facilitate faster training and transfer of information. The
concatenation of connections derived from different levels pro-
vides the highest layer with a hierarchical compositionality that
can be exploited by the output.
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Figure 2: Comparison of SHANNs with a SNN and a DNN. Left : Reconstruction errors during training. Center-Left : Classification
accuracies during training. Center-Right : Classification accuracies for different sizes of shallow connections. Right : Classification
accuracies from representations learned at different layers.

Experiments

Comparison with Deep and Shallow Networks

We hypothesize that SHANNs can simultaneously achieve the
fast learning of Shallow Neural Networks (SNNs) as well as
the high performance of DNNs. To test this hypothesis, we
evaluate the performance of SHANNs with 4 hidden layers, as
depicted in Fig. 1, in comparison to a SNN and a DNN. The
DNN also has 4 hidden layers but only with the hierarchical
connections of Eq. 1. The SNN has a single hidden layer.
We use the MNIST dataset, with the images normalized and
flattened into vectors of length 784. The hidden layers of all
models have length d = 32.

First, we train the three models to encode the MNIST dig-
its using unsupervised learning with an additional single-layer
decoder and the mean squared error of the reconstructions as
a loss function. The network weights are subsequently frozen
and used to train linear classifiers to predict the labels of the
images. Results are shown in Fig 2. We see that a SHANN
with din = 16 outperforms both SNNs and DNNs. We find the
best classification results using SHANNs with din = 12 and
din = 16, i.e. around half the size of the hidden layers. All
SHANNs with up to din = 20 outperform the DNN. The training
curves also reveal that while both the DNN and the SHANN
have more trainable parameters than the SNN, only the latter
learns as fast. Therefore, we conclude that access to shallow
connections in a hierarchical architecture accelerates learning
and leads to better representations.

MNIST Layer 2 Layer 3 Layer 4

Figure 3: Average of all MNIST test images and feature im-
portances in shallow and hierarchical connections.

Hierarchical compositionality
Second, we evaluate the hierarchical compositionality of the
trained SHANN by analyzing the classification accuracies
from the representations learned at different layers of the net-
work. The resulting plot is shown in Fig. 2. While the SHANN
outperforms the DNN and SNN using the representations in
layer 4, the accuracy for lower levels of the hierarchy is below
that of a SNN as well as the lower levels of a DNN. Therefore,
we find that SHANNs perform hierarchical compositionality by
distributing the representations of the inputs across the shal-
low and hierarchical connections in the last layer.

To better understand this phenomenon, we evaluate the
feature importances for the shallow and hierarchical connec-
tions. We analyze how the image pixels contribute to the ac-
tivation of the different neurons of a layer. Here, we compute
the average feature importances using all images in the test
dataset for layers 2, 3, and 4. For each, we compute the aver-
ages for the shallow and hierarchical connections, and plot the
differences between the two in Fig. 3. Blue areas, indicative
of more prominent shallow connections, are visible on the bor-
ders of the images, whereas the center of the images is more
relevant for the hierarchical connections. This is consistent
with hierarchical compositionality, whereby the shallow con-
nections encode regions scarsely informative, whereas the
hierarchical connections encode the most informative region,
i.e. the center of the digit.

Conclusions
SHANNs achieve shallow-like fast learning while outperform-
ing both SNNs and DNNs. In future work, we will explore how
SHANNs can be extended to other classes of neural networks,
in particular with convolutional layers, and perform additional
evaluations with more complex tasks where shallow connec-
tions alone are insufficient. We believe the shallow hierarchi-
cal architecture can result in valuable improvements to artifi-
cial neural networks and help bridge that gap between neuro-
science and machine learning. Nevertheless, there are many
other types of brain computations missing in artificial neural
networks that could improve performance even further, such
as cortical-subcortical loops and local learning rules.



Acknowledgments
This research was supported by “The Adaptive Mind” funded
by the Hessian Ministry of Higher Education, Research, Sci-
ence and the Arts, Germany, and by the German Research
Foundation (DFG) Project numbers 520617944, 520223571
(“Sensing LOOPS”). JT was supported by the Johanna
Quandt foundation.

References
Felleman, D. J., & Van Essen, D. C. (1991). Distributed hier-

archical processing in the primate cerebral cortex. Cerebral
cortex (New York, NY: 1991), 1(1), 1–47.

He, K., Zhang, X., Ren, S., & Sun, J. (2015). Deep residual
learning for image recognition. In Proceedings of the ieee
conference on computer vision and pattern recognition (pp.
770–778).

Huang, G., Liu, Z., Van Der Maaten, L., & Weinberger, K. Q.
(2016). Densely connected convolutional networks. In Pro-
ceedings of the ieee conference on computer vision and
pattern recognition (pp. 4700–4708).

LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning.
nature, 521(7553), 436–444.

Lindsay, G. W. (2021). Convolutional neural networks as a
model of the visual system: Past, present, and future. Jour-
nal of cognitive neuroscience, 33(10), 2017–2031.

Siegle, J. H., Jia, X., Durand, S., Gale, S., Bennett, C.,
Graddis, N., . . . others (2021). Survey of spiking in the
mouse visual system reveals functional hierarchy. Nature,
592(7852), 86–92.

Suzuki, M., Pennartz, C. M., & Aru, J. (2023). How deep is
the brain? the shallow brain hypothesis. Nature Reviews
Neuroscience, 24(12), 778–791.

Tervo, D. G. R., Hwang, B.-Y., Viswanathan, S., Gaj, T.,
Lavzin, M., Ritola, K. D., . . . others (2016). A designer
aav variant permits efficient retrograde access to projection
neurons. Neuron, 92(2), 372–382.

Yu, L., & Yu, Y. (2017). Energy-efficient neural information pro-
cessing in individual neurons and neuronal networks. Jour-
nal of Neuroscience Research, 95(11), 2253–2266.


