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Abstract
Visual information consists of static and dynamic prop-
erties. How is their representation organized in the vi-
sual system? Static information has been associated with
ventral temporal regions and dynamic information with
lateral and dorsal regions. However, investigating the
representation of static and dynamic information is com-
plicated by the correlation between static and dynamic
features of continuous visual input. Recent work ad-
dressed this challenge by using point-light displays and
kinematograms to isolate motion information, but such
stimuli might not capture the rich dynamics contained in
realistic videos. Here, we separated static and dynamic
features in realistic videos using two-stream deep con-
volutional neural networks and used them in conjunction
with fMRI and representational similarity analysis to in-
vestigate the representation of static and dynamic infor-
mation in the visual system. First, consistent with re-
cent findings, we showed that both static and dynamic
features are encoded across all visual streams. Second,
we found that brain streams represent shared as well as
unique static and dynamic visual information.
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Introduction
The visual system is organized into distinct streams
(Ungerleider, Mishkin, et al., 1982; Pitcher & Ungerleider,
2021); the ventral stream has been proposed to encode static
object identity (Issa, Cadieu, & DiCarlo, 2018; Logothetis,
Pauls, & Poggio, 1995; Grill-Spector & Weiner, 2014), while
dynamic information has been associated with the lateral and
dorsal streams (Ganel & Goodale, 2003; Culham et al., 2003;
Pitcher, Duchaine, & Walsh, 2014). Nonetheless, this evi-
dence does not rule out the possibility that ventral regions
might also encode some dynamic information. To what ex-
tent does the dissociation between visual streams correspond
to differences in their representation of static vs. dynamic vi-
sual features?
Ventral regions show responses to static objects that can be
explained using image statistics (Rose, Johnson, Wang, &
Ponce, 2021; Doshi & Konkle, 2023). Yet, object identity infor-
mation, generally associated with the ventral stream, can be
recognized even in the absence of informative static features:
participants can categorize objects from structured movement
depicted by point-light displays (Mather & West, 1993; Vuong,
Friedman, & Read, 2012). Similar stimuli can also support ac-
tion recognition (Alaerts, Nackaerts, Meyns, Swinnen, & Wen-
deroth, 2011; Dittrich, Troscianko, Lea, & Morgan, 1996). To-
gether, this evidence suggests that dynamic information plays
a role in tasks traditionally associated with the ventral as well
as the lateral and dorsal streams. Others have isolated motion
signals (Robert, Ungerleider, & Vaziri-Pashkam, 2023) as well
as motion direction (Ramezanpour, Ilic, Wildes, & Kar, 2024)
in ventral stream responses, and parallel work identified static

shape information in dorsal stream regions (Freud, Culham,
Plaut, & Behrmann, 2017).
We hypothesize that all streams encode both static and dy-
namic visual features, with differences in content that de-
pend on each stream’s functional role. In this study, we first
present a systematic investigation of the unique contributions
of static and dynamic visual features, using different deep neu-
ral networks (DNNs) trained either with or without supervi-
sion. We compared the deep networks’ internal representa-
tion with human fMRI responses to naturalistic videos (For-
rest Gump movie) to quantify how accurately each model can
account for the neural activity across regions in different vi-
sual streams. Based on a probabilistic atlas of brain regions
(Wang, Mruczek, Arcaro, & Kastner, 2015), visual streams
were subdivided into ventral, dorsal, lateral, and parietal.
Our results show that all streams represent both static and dy-
namic features (even after controlling for features of the other
type). We also find that different pairs of streams represent
both shared and unique static and dynamic information, indi-
cating that representational content is shaped by the streams’
unique functional roles.

Methods
Stimuli and Neural Data
BOLD fMRI responses (3×3×3 mm) to the movie ‘For-
rest Gump’ were obtained from the studyforrest audiovisual
dataset (Hanke et al., 2016) (http://studyforrest.org).

Hidden two-stream Convolutional Neural Network
We used the models in (Zhu, Lan, Newsam, & Hauptmann,
2019) and trained three DNNs separately, to encode static
and dynamic features: A supervised (sup) static net that pre-
dicts action labels from a single frame, an early unsupervised
(unsup) dynamic net that reconstructs a future frame by in-
ferring the optic flow from preceding frames by minimizing an
unsupervised learning objective, and finally a late supervised
(sup) dynamic net which predicts action labels from optic flows
extracted by the early (unsup) dynamic net. The representa-
tional similarity was computed with Pearson correlation.

Results
All streams represent static and dynamic features
We measured the similarity between representations in each
deep neural network’s layer with each brain stream. Figure 1a
shows that static features correlated with the ventral stream.
They also correlated with dorsal, lateral, and parietal streams.
Dynamic features correlated with dorsal, lateral, and parietal
brain streams as well. Critically, dynamic features also corre-
lated with the ventral stream, suggesting that ventral regions
do not encode exclusively static information (all p-values sig-
nificant at Bonferroni-corrected thresholds of 0.001).
Static and dynamic features might covary (e.g., cars look in a
certain way and also tend to move in a certain way). There-
fore, to test whether brain streams represent uncorrelated
static and dynamic features, we measured the semi-partial



correlation between a DNN’s features and a brain stream,
while controlling for the other two DNNs.
Figure 1b shows that the uncorrelated (sup) static and the
early (unsup) dynamic models’ features correlate with all the
visual streams (significant at Bonferroni-corrected p-values of
0.001). The similarity between the late (sup) dynamic model
and brain streams can be accounted for by the (sup) static
and early (unsup) dynamic features, showing a drop in the
correlation between the late (sup) static model and the neural
responses in all of the brain streams.
This indicates that the correlation of visual streams with either
static or dynamic visual features cannot be fully accounted for
by the covariation between dynamic features and static fea-
tures.

Figure 1: Similarities between models’ features and fMRI
responses in brain streams. Each bar is the sum of the
semi-partial Pearson correlation between neural activity and
a DNN’s layers, a) while controlling for all the model’s previ-
ous layers’ features, and b) while additionally controlling for
the other two DNNs (t-tests were conducted at Bonferroni-
corrected threshold for 0.05, 0.01, 0.001).

Streams represent unique as well as shared static
and dynamic information

We expect different brain streams to perform different func-
tions and thus to encode different information. While all
streams represent both static and dynamic features they might
not encode the same static and dynamic information. To in-
vestigate this, we measured how well the uncorrelated visual
features account for each stream’s responses while addition-
ally controlling for the neural responses in the other streams
(Figure 2).

As expected, the ventral stream represents unique as well
as shared static features with the dorsal stream. We also
found that lateral and parietal brain streams share dynamic
visual features with both the ventral and the dorsal streams
while having their own unique static features. Critically, we
observed that after controlling for the ventral stream in the dor-
sal stream, the correlation with the (sup) static model persists

Figure 2: Shared vs. unique representation of static and dy-
namic across pairs of brain streams. The colored ring displays
the representational similarity between a visual stream (noted
in the column title) and a DNN, controlling for the other DNNs.
The triangles display the representational similarity after addi-
tionally controlling for one other stream (noted on the outside
of the circle). (*=.05, **=0.01, ***=0.001, Bonferroni corrected)

(p < 0.001, Bonferroni-corrected), indicating that the dorsal
brain stream encodes static features that are not captured by
the ventral stream. Additionally, the ventral stream remained
significantly correlated with the early (unsup) dynamic model,
even after regressing out the dorsal stream. This means that
the ventral stream represents dynamic features that are not
captured by the dorsal stream.

Discussion

We investigated systematically the representation of static and
dynamic information in different visual streams, finding that 1)
all streams encode both static and dynamic information, 2)
distinct streams encode shared as well as unique static and
dynamic features.
These results show that different visual streams cannot be dis-
tinguished based on the presence or absence of static or dy-
namic information, but rather that they differ in terms of the
kinds of static and dynamic information they encode. The re-
lationship between each stream’s functional role and the kinds
of features it represents will need to be elucidated in future
studies.

Acknowledgments

We would like to thank the researchers in the StudyForrest
project for curating the dataset.



References

Alaerts, K., Nackaerts, E., Meyns, P., Swinnen, S. P., & Wen-
deroth, N. (2011). Action and emotion recognition from
point light displays: an investigation of gender differences.
PloS one, 6(6), e20989.

Culham, J. C., Danckert, S. L., Souza, J. F. D., Gati, J. S.,
Menon, R. S., & Goodale, M. A. (2003). Visually guided
grasping produces fmri activation in dorsal but not ventral
stream brain areas. Experimental brain research, 153, 180–
189.

Dittrich, W. H., Troscianko, T., Lea, S. E., & Morgan, D. (1996).
Perception of emotion from dynamic point-light displays rep-
resented in dance. Perception, 25(6), 727–738.

Doshi, F. R., & Konkle, T. (2023). Cortical topographic motifs
emerge in a self-organized map of object space. Science
Advances, 9(25), eade8187.

Freud, E., Culham, J. C., Plaut, D. C., & Behrmann, M. (2017).
The large-scale organization of shape processing in the
ventral and dorsal pathways. elife, 6, e27576.

Ganel, T., & Goodale, M. A. (2003). Visual control of action
but not perception requires analytical processing of object
shape. Nature, 426(6967), 664–667.

Grill-Spector, K., & Weiner, K. S. (2014). The functional archi-
tecture of the ventral temporal cortex and its role in catego-
rization. Nature Reviews Neuroscience, 15(8), 536–548.
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