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Abstract
In this study, we explore the decoding of task-specific
cognitive states and how they generalize to continuous
neural recordings. Using electrocorticography (ECoG)
data from eight neurosurgical patients performing var-
ious speech production tasks, we compare the perfor-
mance of three time-series classification models (pre-
dicting perception, speech and rest). Results demon-
strate that our proposed framework based on a mini-
rocket model achieves highest accuracy and fastest in-
ference time compared to the other models. Further, we
assess the electrode importance for decoding and find a
strong correlation between signal activity and decoding
accuracy across sensory and motor regions. However,
we do not find this relationship in other frontal regions.
Our framework exhibits robust generalization capability
across recording sessions, showcasing its potential for
analyzing continuous neural recordings and deciphering
cognitive states accurately.
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Introduction
Human neuroscience research has undergone a notable
transformation, gravitating towards the integration of unstruc-
tured, naturalistic, and continuous neural recordings alongside
task-structured recordings to unveil deeper insights into brain
dynamics. While this transition from structured task-based
data allows for a more comprehensive understanding of neural
activity, it comes at the cost of increased complexity and the
need for laborious manual annotations, especially for motor
tasks. Here we ask if learning from different cognitive states
in task-based structures can help us identify relevant events
in continuous neural recordings?

Methods
We use electrocorticography (ECoG) recordings from eight
neurosurgical patients with electrodes sampling perisylvian
and occipital regions while they perform speech production
tasks varying in modality. The participants were instructed
to complete three tasks to produce the same target words in
response to certain auditory or visual stimuli: auditory rep-
etition (i.e., repeat an auditory presented word), visual word
reading (i.e., read out loud a visually presented written word),
and picture naming (i.e., name a word based on a line draw-
ing). For each task and trial the stimulus was randomly pre-
sented and participants produced the target word freely after
which the next trial started (Fig. 1(A)). We extract neural ac-
tivity (high gamma broadband: 70-150 Hz; z-scored across
the entire recording session) during three event-related cog-
nitive states of each task (rest, stimulus presentation, and
speech production; five class labels in total). For each par-
ticipant, we train a classifier to predict these states given the
high-gamma neural activity. We extend the mini-rocket trans-
form (Dempster, Schmidt, & Webb, 2021) to handle multivari-
ate neural signals with unequal temporal lengths for feature

extraction, followed by feature normalization and a logistic re-
gression classifier (Fig. 1(A)). We compare mini-rocket against
two other state-of-the-art feature extraction methods: HIVE-
COTEv2 (Middlehurst et al., 2021) and random interval sam-
pling with Catch22 (Lubba et al., 2019), using five fold strati-
fied cross-validation.

Figure 1: (A) Overview of the classification framework: Each
task involves three main cognitive states: rest, stimulus
perception, and articulation. A time-series classifier learns
to classify these different states given the neural activity.
(B,C) Three different feature extraction models are compared
based on their classification performance and inference speed
(mean and standard error of the mean shown over participants
for each model).

Results
We evaluate the decoding performance of task-specific cog-
nitive states for the three different models on a hold-out set
(Fig. 1(B,C)). As shown, mini-rocket model, achieves higher
accuracy with faster inference time (a: 94% f: 94% t: 7.8s)
compared with HIVE-COTEv2 (a: 91% f: 89% t: 106.7s) and
random interval Catch22 (a: 76% f: 76% t: 58.9s). Fig-
ure 1(B) illustrates the capacity of our adapted mini-rocket
model to consistently outperform other models across partic-
ipants. Leveraging the convolutional architecture, the mini-
rocket transform exhibits this high accuracy while significantly
reducing inference time by an order of magnitude (Fig. 1(C)).
Consequently, the mini-rocket model emerges as a promis-
ing candidate for scenarios where we analyze an stream of
continues data. We focus the rest of our experiments on the
architecture with mini-rocket model.

To quantify the importance of an electrode for decoding,
we use the permutation importance test for feature evalua-
tion (Breiman, 2001). The importance score of an electrode
is calculated as follows. For the model trained for each par-
ticipant, we first evaluate the baseline accuracy on a hold-out
set. Next, for any given electrode, we permute its signal from



the hold-out set and evaluate the accuracy again. The per-
mutation importance score is defined as the mean difference
between the baseline accuracy and the accuracy from per-
muting the electrode signal after 10 repetition of each trial in
the hold-out set. We compare the importance score to the
high-gamma signal activity of each electrode as in Figure 2.

We observe many electrodes with high importance scores
across perisylvian cortex. However, many electrodes with
high signal activity do not necessarily exhibit a high impor-
tance score (compare Fig. 2(A) and (B)). To quantify the re-
lation between the importance score and signal activity we
directly compare and correlate the two values across five re-
gions of interest: superior temporal, pre-central, post-central,
inferior frontal, and middle frontal gyri (Fig. 2(C-G), respec-
tively). For electrodes in speech sensory and motor regions
we observe a positive relation between signal activity and im-
portance score; electrodes with higher signal activity are con-
tributing more to decoding accuracy. However, in frontal re-
gions, especially middle frontal gyrus, this relation is not sig-
nificant. In fact, we observe a set of electrodes in middle and
inferior frontal gyri with low signal activity that achieve a high
importance score. This finding suggests that low values of
signal activity can still lead to discernible feature patterns, es-
pecially after the mini-rocket convolution transformation. This
highlights the significance of investigating decoding impor-
tance compared with signal activity alone when investigating
mechanisms underlying speech perception and production.

Figure 2: The spatial distribution of decoding importance
score (A) and high-gamma signal activity (B) are shown
across participants on a normal brain. Importance score plot-
ted against signal activity for five regions of interest (C-G).
Each point represents an electrode in a selected ROI (color-
codes shown in H; region assignment for each electrode is
based on individual participant’s anatomy) and the lines show
the least-squares line fit (Pearson-correlation and correspond-
ing p-value are shown in boxes for each plot).

To test the generalization capability of our framework to fu-
ture recordings, one participant repeated the tasks for an extra
separate recording session. The mini-rocket classifier trained
on one session generalizes well when tested on the other
(Fig. 3(A)). We note that the confusion between the two visual
perceptions is expected due to no coverage of occipital cortex
in this participant. We then applied the classifier trained on
recording session 1 to a stream of continuous neural record-
ings from session 2. Figure 3(B) shows that the mini-rocket
model can pinpoint the event windows with high accuracy (vs.
annotated event onsets). Notably, the model correctly classi-
fies the transitions between different states with varying time
lengths.

Figure 3: (A) Decoding confusion matrices shown for train-
ing and testing on matching and different recording sessions
for one participant. The mini-rocket classifier trained on one
session generalizes well when tested on the data from a dif-
ferent recording session. (B) Event fingerprinting performed
using the mini-rocket model on a continuous stream of neu-
ral recordings from auditory repetition is compared to human-
annotated event onsets. Each row in (B) plots the probability
of being at a given cognitive state over time (from top to bot-
tom: resting, auditory perception, speech production, and vi-
sual perception from both visual tasks overlaid). Dotted lines
show the human-annotated event onsets in time.

Conclusion
We evaluate classifiers trained on task-structured data for
event detection in continuous neural activity streams. We re-
port a fast and accurate classifier that generalizes well to con-
tinuous recordings. When scaled up, our model enables an-
notation and investigation of complex neural activity dynamics
in naturalistic scenarios.
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