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Abstract
The hippocampus and associated brain areas exhibit
striking replay activities. Replays are thought to be im-
portant in learning, memory and planning, and have im-
portant implications in developing learning algorithms in
machine learning. Surprisingly, how to characterize the
structure of replays remains controversial. Most existing
methods rely on restrictive assumptions, by detecting re-
play activities based on the sequentiality of spike trains
or the posterior probability decoded from a Bayesian
framework. We develop a general and high-interpretable
drift-diffusion framework to understand the structure of
replays. The two key parameters (drift & diffusion pa-
rameters) in the model can be directly mapped onto the
speed and quality of a replay event. Applications of this
framework provide new opportunities to address impor-
tant open questions in the study of replays, including: (i)
whether replays follow random walk; (ii) whether many
of the replay events are stationary; (iii) whether preplay
exists. We expect that our approach will be broadly appli-
cable in studying the structure and dynamics of replays.
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Introduction
The mammalian hippocampus exhibits various forms of replay
activities. Neural activities during sharp waves and ripples
(SWRs) appeared to replay previous experience in forward
or reverse orders, both during sleep (Skaggs & McNaughton,
1996) and awake immobility (Foster & Wilson, 2006). Re-
plays were initially discovered in rodents, and more recently
in humans (Schapiro, McDevitt, Rogers, Mednick, & Norman,
2018). Replays in the Hippocampus were found to be coor-
dinated with neural activities in other brain regions, e.g., pre-
frontal cortex (Shin, Tang, & Jadhav, 2019) and visual cor-
tex (Ji & Wilson, 2007). Replays are generally thought to
play important roles in learning, memory consolidation, and
planning (Foster, 2017; Stachenfeld, Botvinick, & Gershman,
2017). In machine learning, algorithms based on experience-
based replay have been developed (Van de Ven, Siegel-
mann, & Tolias, 2020). These algorithms have been shown
to increase the performance of learning in a variety of tasks
and play an important role in reinforcement learning (Schaul,
Quan, Antonoglou, & Silver, 2015; Mattar & Daw, 2018).

Despite of decades of research, detecting replays and char-
acterizing their properties remain challenging. Classic ap-
proach relies on template matching, i.e., to assess how well
a given population activity pattern during SWRs matches that
during running (Wilson & McNaughton, 1994; Skaggs & Mc-
Naughton, 1996). However, many SWRs events can not be
unambiguously classified according to this approach, mak-
ing it difficult to analyze replays. Recent studies suggest re-
plays may exhibit richer dynamics than initially considered,
and such dynamics may have important implications in learn-
ing (McNamee, Stachenfeld, Botvinick, & Gershman, 2021).

Here we propose a general drift-diffusion framework to
study the dynamical structure of replay events, building upon
recent work that seeks to better describe the rich dynamics of
replays (Denovellis et al., 2021; Krause & Drugowitsch, 2022).

Our framework generalizes the classic methods of analyzing
replays, yet remains simple and highly interpretable. Prelim-
inary applications of our method to hippocampal recordings
during spatial tasks lead to new ways to resolve several major
debates in the study of replay.

Results and Discussions

Modeling framework

Consider an experiment where the animal is navigating on a
one-dimensional track (Fig. 1A), which is a commonly used
behavioral paradigm in studying replays. During SWRs, hip-
pocampal activity encodes sequence of locations on the track.
Classic replay detection methods assume that these locations
change at a constant speed (as if the animal is running on the
track at a constant speed). We generalize this idea by allowing
more flexible transition dynamics between replay states.

Specifically, we assume that the temporal transition dynam-
ics of replayed locations was characterized by a drift-diffusion
process (Fig. 1B):

dz = λdt +σdW (1)

where λ and σ are the drift and diffusion parameters. dW
denotes the standard Brownian motion process. We further
assume that given the latent state, the activity of individual
neurons follows an independent Poisson process. Practically,
we discretize time into small bins (e.g., 10ms), in which case
the dynamics can be approximated using transitional probabil-
ity between the different states for adjacent time steps (i.e., a
first-order Markov process). While we will focus on modeling
replay in 1-D environment, the approach can be generalized
to more complex environments. Several special cases of our
model worth pointing out (Fig. 1C):

• Brownian motion When drift= 0, and the diffusion param-
eter is non-zero, the latent trajectory is sampled from 1-d
Brownian motion. Brownian motion is recently proposed to
describe replay dynamics in 2-D open arena (Stella, Barac-
skay, O’Neill, & Csicsvari, 2019).

• Stationary events When both the drift and diffusion param-
eters are zero, the trajectory is stationary, a scenario which
is emphasized recently in (Denovellis et al., 2021).

• Pure drift When diffusion= 0, and drift is non-zero, the la-
tent trajectory will drift toward one direction with a constant
speed. Intuitively, this corresponds to a “perfect replay”
event according to the classic notion of replay events.

Model fitting and validation

The drift-diffusion model is formalized as a hidden Markov
model (HMM). The observed variables consist of the spike ac-
tivity recorded from a population of place cells, while the hid-
den variables correspond to the spatial locations represented
during replay events. To fit this model, we use a MLE ap-
proach applied to each replay event. Specifically, we utilize
the forward-pass algorithm of the HMM to calculate the log-
likelihood, which is the sum of natural logarithm of the forward
probabilities at each time step. We validated the model with
recovery analysis suggesting that parameters can be well re-
covered with sufficient number of spikes (not shown).
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Figure 1: A. Top, rat runs back and forth in a 1.8 m linear track to receive rewards shown alternatively at two ends. Bottom,
location tracking of the rat during a recording session. The two ends are slightly elongated to place food rewards. B. The graph of
the hidden Markov models. C. Categories of trajectory dynamics considered in the study. D-F. Decoding likelihood comparison
of stationary, drift, diffusion, and drift-diffusion dynamics. The difference of log-likelihood is calculated between two dynamics
for every replay event, with drift-diffusion being the reference. G. The distribution of the decoded drift-diffusion parameters for
SWRs before running experience (n = 544). Each dot is color-coded based on the estimated density from decoded parameter
pairs of all pre-run SWRs.

Applications

We have preliminarily applied our framework to investigate
several open questions in the study of replay. We analyze
the data from (Pfeiffer & Foster, 2015) by fitting our model to
individual SWRs events (n = 3185). In these experiments, the
rats were navigating on a 1-dimensional track (Fig. 1A).

Question 1: Does hippocampus replay follow Brownian
motion? A recent study suggests that replays in 2-D open
arena resembled Brownian motion (Stella et al., 2019). It
is presently unclear whether similar results hold in 1-D. We
investigate this question by comparing whether the SWRs
events are better explained by drift-diffusion model or a Brow-
nian motion model(i.e., pure diffusion, equivalent to setting the
drift parameter to 0). We find that most SWRs events are
well explained by the diffusion model (Fig. 1D). Meanwhile, a
fraction of the events are slightly better explained by the drift-
diffusion model, thus has a non-zero drift speed. These pre-
liminary results suggest that on linear tracks, the majority, but
not all, of SWRs events do not exhibit a substantial drift.

Question 2: Does a large fraction of hippocampus re-
play stationary? Recent work argued that a substantial por-
tion of SWR events were stationary events (Denovellis et al.,
2021). Our framework offers a natural way to further investi-
gate this question by studying the inferred drift and diffusion
parameters from data. Stationary events have zero drift and
zero diffusion. Fitting our model to the data, we find a fraction
of portion of events with low inferred drift parameter values. To
test it further, we constrain the drift and diffusion parameters to
be both 0, and fit this model to the data. Comparing the fitted
log-likelihood, we find that a significant portion of SWRs are
consistent with stationary dynamics (Fig. 1E). However, mod-
els based on stationary dynamics perform poorly in a substan-
tial fraction of SWRs (745/3185, ∼ 23%, have log-likelihood
difference > 10), thus can not explain all SWRs events.

Question 3: Is there evidence for preplays during SWR?
It has been suggested that the hippocampus ”preplay” se-
quences of neural activity before the animal has any expe-
rience in a given environment (Dragoi & Tonegawa, 2011).
While preplays potentially have important implications in the
function of replays, the existence and prevalence of preplays
remain debated (Silva, Feng, & Foster, 2015), mainly due to
the difficulty in characterizing replay events. As our method
provides a more general approach to characterize replays, we
set to test whether there is evidence for the replay. Applying
our method to the data in the sleep phase before running ex-
perience (Pfeiffer & Foster, 2015), we observed that a small
fraction of the SWRs exhibit sequential structure before the
behavioral experience (60 out of 544 SWRs with λ > 2 m/s
and σ < 1 m/

√
s), larger than the fraction obtained from tem-

porally reshuffled data (33 out of 544; p-value = 0.002, one-
side test; 90% C.I for difference in proportion: [2.2%, 7.7%]).
These preliminary results suggest that (i) hippocampus activ-
ity before spatial experiences contain certain sequential struc-
tures that is unlikely due to chance; (ii) preplay, if existed,
would be generally rare.

Discussions and future directions
We have developed a drift-diffusion framework to model the
replays. A recent study (Krause & Drugowitsch, 2022) uses
second-order HMM to model replay. In contrast, we use first-
order HMMs that characterize a wide range of dynamics with
only a few parameters. We will seek to understand the rela-
tionship between our inferred parameters and those from pre-
vious template matching-based methods. It should be pos-
sible to extend our method to 2-D, incorporating jumping dy-
namics (Denovellis et al., 2021) and super-diffusive dynam-
ics (McNamee et al., 2021). We expect that a flexible and effi-
cient statistical framework will enable a deeper understanding
of the dynamics of replays in the brain.
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