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Abstract: 

Neural networks offer a powerful tool for testing 
mechanistic hypotheses about cognition. We explored the 
utility of this approach in a monogenic developmental 
disorder, by integrating a recurrent neural network 
(RNN) model and MEG task data from individuals with 
ZDHHC9-associated intellectual disability and age-
matched controls. Given experimental evidence of 
ZDHHC9 implication in inhibitory synapse formation, 
we tested whether reducing inhibition levels in a RNN 
model of auditory processing trained on neurotypical 
evoked responses recapitulates case group 
neurophysiology. We show that stronger reductions in 
recurrent, inhibitory weights resulted in increased peak 
amplitude and peak latency of RNN prediction relative 
to the pre-perturbation predictions, similar to case-
control empirical trends. In contrast, increasing network 
excitation via the excitatory weights failed to consistently 
recapitulate these trends. Together, these results suggest 
that reduced synaptic inhibition is a plausible mechanism 
by which loss of ZDHHC9 function alters cortical 
dynamics during sensory processing. 
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Introduction 

Combining the study of rare single gene disorders related to 
intellectual disability (ID) with neural network models of the 
brain can provide insights into specific mechanisms 
contributing to developmental cognitive difficulties. We trial 
this approach by employing a recurrent neural network 
(RNN) model of auditory processing as a tool for mapping 
genetically-driven, local alterations to systems-level activity, 
in a group of individuals with ZDHHC9-associated ID. The 
ZDHHC9 gene encodes a palmitoylation enzyme, ZDHHC9, 
which promotes inhibitory synapse formation (Shimell et al., 
2019). Loss-of-function variants have been associated with 
X-linked ID, rolandic epilepsy and language difficulties 
(Baker et al., 2015). In primary neuronal cultures, ZDHHC9 
variants lead to shorter and less complex dendritic arbours 
and an increase in the ratio of excitatory-to-inhibitory 
synapses (Shimell et al., 2019). 

The aims of this study were two-fold: 1) to characterise 
neurophysiological differences between individuals with 
ZDHHC9 variants and neurotypical controls and 2) to test the 
hypothesis that weaker network inhibition in a RNN model 
of auditory processing recapitulates these differences.  

MEG data were recorded from participants in the case (N 
= 8) and control (N = 7) groups during a passive roving 

oddball task, to enable assessment of auditory change 
detection via MEG mismatch negativity (mMMN) (Cowan et 
al., 1993; Garrido et al., 2009; Kirihara et al., 2020; Näätänen 
et al., 2014). The empirical MEG data was then integrated 
with the RNN to test whether qualitative differences between 
the two groups in terms of auditory evoked field responses 
(AEFs) can be explained by ZDHHC9-associated synaptic 
alterations, i.e. reduced network inhibition. 

Methods 

Experimental task 

The roving task involved the repeated presentation of 
standard stimuli of a particular frequency (250Hz, 500Hz, or 
1000Hz) 3-12 times, followed by a frequency switch (the 
deviant, which, through repetition, became the new 
standard).  

The model 

We implement a discrete-time RNN with four hidden layers 
using the Tensorflow package (Abadi et al., 2016). Standard 
inputs (S) to the RNN were designed as three consecutive 
waveforms (250, 500 or 1000Hz); deviants (D) were 
represented by a change in frequency of the third waveform 
(Figure 1a). The RNN was trained in a supervised fashion, 
and the labels (targets) were empirically derived. 

 

 
 

Figure 1. a. Spectrograms of an example standard (S) and 
deviant (D) input. b. Simplified diagram of the RNN 
architecture. Input layer (green) had 63 recurrent units, each 
hidden layer had 64 units and the output layer had 1 recurrent 
unit. c. Targets were simulated AEFs obtained by adding 
Gaussian white noise (s.d. = 0.6) to the control group-level 
post-stimulus AEF in response to S and D tones, respectively. 
d. The RNN was trained for 10 epochs. e. RNN predictions 
to S and D inputs. 



   The targets were robust-scaled and flipped so that most 
values are positive. The model was optimised to minimise 
mean-squared-error (MSE) loss between predictions and 
targets, using gradient descent and the Adam optimiser. 
Dropout regularisation with a rate of 0.15 was used in the 
hidden layers.   
 

After training, the RNN was perturbed to test the impact of 
alterations mimicking the ZDHHC9 loss-of-function 
phenotype, reduced synaptic inhibition, on the RNN output. 
We conducted perturbation experiments at the level of the 
recurrent connections in the hidden layers by weakening 
inhibitory connections relative to task-optimized values for 8 
levels between 0.5%-4% and assessed the effects on the 
network’s predictions. Two control experiments in which we 
either increased excitatory weights or concomitantly reduced 
and increased a random set of inhibitory and excitatory 
weights, respectively, for the same levels, were performed.  

 

Results 
We compared S and D trial responses between the control and 
ZDHHC9 groups (Figure 2). AEFs in the ZDHHC9 group 
showed increased amplitude, increased peak latency and 
increased mismatch negativity (MMN) compared to controls, 
suggesting stronger and slower AEF responses (Figure 2). 
 

 
 

Figure 2. a. Averaged AEF responses to all deviants (D) and 
their corresponding preceding standard (S) at the 8 sensors 
where significant S-D differences were found in both the 
control and ZDHHC9 groups. In yellow, the timeframe of 
significant differences is shown. a. Control group response 
(p-value = 0.0008). b. ZDHHC9 group response (p-value = 
0.0015). c. The values from the plots in a. and b. (absolute 
values for peak amplitudes) and mismatch negativity (MMN) 
calculated as mean absolute error between standard-evoked 
responses and deviant-evoked responses in the significant 
time window. 

Next, we compared RNN predictions before and after 
perturbations to the empirical trends. Inhibition reduction 
experiments resulted in predicted AEFs and MMN with 
linearly increasing amplitudes (Figure 3a) relative to baseline 
levels, which mirrors the trend observed empirically between 
the control and ZDHHC9 groups (Figure 2). AEF peak 
latencies also increased from baseline. Increased excitation 
resulted in exponential increases in AEF peak amplitude from 
2% weight increases onwards (Figure 3b), accompanied by 
peak latencies in the latter half of the AEF window. 
Perturbing a random set of excitatory and inhibitory weights 
resulted in opposite polarity AEFs with peak amplitudes and 
MMN varying minimally across the perturbation levels, and 
a constant peak latency at 300ms (Figure 3c).  

 

 
 
Figure 3. Predicted AEFs for standard (solid lines) and 
deviant inputs (dotted lines; left panel) and relative increases 
from initial RNN predictions (pre-perturbation) after each 
perturbation experiment (right panel). a. Experiment 1 
(negative weight perturbation), b. Experiment 2 (positive 
weight perturbation) and c. Experiment 3 (random weight 
perturbation). 
 

Conclusions  
The current study serves as a proof-of-concept for using 
neural networks to investigate mechanistic origins of 
developmental cognitive disorders. Our results support a 
causal link between reduced cortical inhibition, increased 
amplitude and peak latency of electrophysiological responses 
in ZDHHC9-associated intellectual disability.  
 
   This work opens the door to the development of more 
complex neural network models of sensory processing to 
study a range of monogenic cognitive disorders. These will 
aid in the development of novel theories about genetic 
influences on cortical processing and offer a deeper, multi-
level understanding of neurodevelopmental conditions.  
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