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Abstract
Deep convolutional neural networks (DNNs) are now ce-
mented as effective computational models in adult visual
neuroscience. However, comparing the learning human
brain to the learning models had not yet been possible
due to the difficulty in collecting sufficient neuroimaging
data from infants. To address this, we conducted longi-
tudinal fMRI on 2-month-old infants (n=130), and again
at 9-months-old (n=65), while they were awake and view-
ing a variety of visual stimuli. Multivariate pattern anal-
ysis (MVPA) revealed a complex representational struc-
ture in visual cortex already at 2-months. We show that
fully-trained DNNs capture a significant proportion of this
structure, and different learning algorithms can deter-
mine the developmental stage that a DNN best explains.

Keywords: visual representations; deep neural networks; ven-
tral stream; fMRI; development

Introduction
DNNs are now commonly used as models of the adult ventral
stream (Richards et al., 2019; Yamins et al., 2014; Zhuang
et al., 2021), but even more than for adult vision research,
they offer the potential for novel insight into visual develop-
ment. There is considerable value in having a mechanistic
model for a learning process isn’t directly accessible, as in-
fants cannot partake in typical cognitive experiments or report
their experiences. Moreover, the parallel between infant and
machine learning is of increasing interest for researchers in
both fields (Zaadnoordijk, Besold, & Cusack, 2022; Smith &
Slone, 2017). Recent work shows that data from an infant’s
perspective can efficiently train even large language models
(Pandey, Wood, & Wood, 2024) and provides the necessary
structure to learn word-visual referents (Vong, Wang, Orhan,
& Lake, 2024). Our work brings this approach a step earlier
in the developmental process, using DNNs to characterise the
visual representations to which words are attached, and ex-
tending the neuroconnectionist (Doerig et al., 2023) research
framework into developmental neuroscience.

Methods and Results
Awake infant fMRI
We acquired a large, longitudinal neuroimaging dataset of
awake infants. Functional MRI (fMRI) was acquired from
2-month-old infants (n=130), and again when they were 9-
months-old (n=65), while watching 12 categories of common
objects. Each category had three exemplars across diverse
viewpoints, totalling 36 images, and most infants participated
for four repetitions of each stimulus to give 144 pictures across
10 minutes of scanning. The distribution of head motion was
acceptable for infants (85% of runs had a median framewise
displacement of less than 1.5mm at 2-months, and 97% at
9-months) and allowed for rigorous scrubbing (final sample in-
cluded in MVPA n=103 2-month-olds and n=38 9-month-olds).
A cohort of adults (n=17) was acquired for comparison. The
BOLD response to each object exemplar was estimated with a

generalised linear model and representational similarity anal-
ysis measured the representational geometry of early visual
cortex (EVC) and ventrotemporal cortex (VTC). We observed
distinct structure in both EVC and VTC from 2-months on-
wards (Fig. 1A,B).

Deep neural network modelling

Having successfully characterised the visual representations
in infant visual cortex, we tested whether DNNs could model
the developing brain. Analyses were written in Python v3.8
with PyTorch v2.0.1 and CUDA 11.7. We tested an untrained
network with randomly initiated weights as well as two fully-
trained networks. All models used AlexNet as the architec-
tural backbone. Fully trained models were implemented with
learning algorithms previously used in DNN models of adult
VTC (Khaligh-Razavi & Kriegeskorte, 2014; Konkle & Alvarez,
2022). The supervised model used the default weights in
torchvision v0.15.2, learned through an ImageNet recognition
task. The self-supervised model was Instance Protocol Con-
trastive Learning, which learns from natural image structure
by contrasting augmented versions of an image to an average
prototype in the embedding space. Each of the three DNNs
were presented with the 36 images from the fMRI study, and
the activations used to construct an RDM for each layer.

Pre-trained DNNs model infant visual responses As in-
fants receive tens-of-thousand times fewer visual samples
than a pre-trained DNN (Frank, 2023), we expected that a
model earlier in its training would better explain the infant
visual cortex. Infant representations did correlate more to
an untrained DNN than adult representations did at both 2-
months and 9-months. However, the fully-trained network out-
performed the untrained model across all age groups (Fig.
1C,G). Contrary to our expectations, visual input played a sig-
nificant role in modelling the visual cortex from as early as 2-
months. Despite less exposure to the world, infant visual rep-
resentations are sophisticated enough to align well with those
from a fully-trained neural network. This alignment increased
with development, coupled with a decrease in correlation to
the untrained network, demonstrating the continued influence
of visual input as we age.

Learning algorithm modulates DNN-infant similarity Su-
pervised learning is unlikely for preverbal infants, whereas
self-supervised learning aligns better with infants’ sensitivity to
comparisons and patterns within the stream of sensory input
(Fiser & Aslin, 2002). We found that infants correlated more
than adults with the self-supervised DNN only in EVC and in
shallow layers (Fig. 1F). We did not observe the expected
hierarchical correspondence between early layers and adult
EVC (Güçlü & Van Gerven, 2015), possibly due to the large
cortical area covered by our ROIs. Nonetheless, the signifi-
cantly higher correlations of infant EVC to early layers was not
observed in the supervised model, revealing that the choice
of learning algorithm can define the developmental stage that
a DNN best explains. The influence of learning algorithm is



Figure 1: A,B Visual representations in EVC and VTC. Axes are the 12 categories spanning animate/inanimate classes, with 3
exemplars per category. C,G Spearman correlation, adjusted by the MRI noise ceiling, of the visual representations to untrained
and fully-trained DNNs. D-F, H-J Layerwise spearman correlations to DNNs trained with different learning algorithms. Error
bars/bands are the 95% confidence interval (CI) calculated using bootstrap resampling across pairs of subjects.

again evident in VTC. Adults correlated more than infants with
every layer of the supervised model (Fig. 1I), but all age
groups showed similar correlations to the early layers of the
self-supervised DNN (Fig. 1J).

Figure 2: A Bootstrap distributions of VTC correlations to
word2vec embeddings for the 12 categories tested. B Partial
correlation of VTC representations to semantic models, con-
trolling for the perceptual features size, elongation, colour and
compactness (Spriet et al., 2022). Exemplar: tests for distinct
responses to each image. Category: tests for generalisation
across exemplars to form a category. Tripartite: tests for tripar-
tite organisation by animate, inanimate small and inanimate
big. Error bars: 95% CI calculated with bootstrapping across
pairs of subjects.

Infant VTC contains semantic distinctions To determine
the complexity of the structure in infant VTC, we examined
correspondences to word-based models of semantic similar-
ity. We obtained word2vec embeddings (Mikolov, Sutskever,
Chen, Corrado, & Dean, 2013) for each of the 12 category
labels, and used a GLM at the 12 category level to esti-
mate category responses in the brain. At 2-months, we found
no evidence for lexical semantics in VTC. However, this had
strengthened by 9-months (Fig. 2A), a time when infants
recognise a few nouns and begin associating words with vi-
sual categories (Bergelson & Swingley, 2012; Pomiechowska
& Gliga, 2019), just prior to the development of speaking.

Is the structure in infant VTC entirely explained by per-
ceptual features? Distinct patterns were evoked by differ-
ent exemplars [Spearman correlation to an identity matrix 2-
months: ρ= 0.342, CI=(0.333, 0.349); 9-months: ρ= 0.351,
CI=(0.343, 0.359); Adults: ρ= 0.336, CI=(0.327, 0.345)]. VTC
representations in all age-groups were correlated to a model
that tested for generalisation across images to form a cate-
gory, even when controlling for perceptual similarity (Fig. 2B).
The tripartite organisation (Konkle & Caramazza, 2013) was
present in VTC at 2-months, significantly increasing in its rep-
resentational strength by 9-months and again into adulthood
(Fig. 2B). This reveals that semantic distinctions, defined by
category membership and learnable through visual input, are
present from early infancy while the influence of labels seman-
tic structure in VTC increases with age.
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