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Abstract
Optimal decision-making entails not only arriving at the
best choice but doing so in the most efficient way pos-
sible. Critically, humans and other animals adjust the
speed and accuracy of their decisions to the demands of
the current task. Recurrent neural networks (RNNs) can
process noisy sequential bits of evidence and are used
as models of decision-making. However, they are typi-
cally trained on input sequences of fixed length, and thus
have no notion of decision time. Here, we develop an RNN
with a separate controller network that adjusts the num-
ber of RNN steps taken in a decision-making task. Using
reinforcement learning in the controller, this architecture
optimally trades off decision time and accuracy. In this
way, it aligns with normative models of human decision-
making, and produces a natural notion of decision time.

Keywords: decision-making; recurrent neural networks; deci-
sion time; reinforcement learning

Humans routinely adjust how they process information and
make decisions based on current task demands (Botvinick et
al., 2001; Bogacz et al., 2006). This allows rapid decisions
when the task is easy or the stakes are low, and increased ac-
curacy as demands increase (Manohar et al., 2015; Leng et
al., 2021). Recurrent neural networks (RNNs) have emerged
as a model of human and animal decision-making, allowing for
mechanistic interpretations of the neural dynamics observed
in the prefrontal cortex (Mante et al., 2013). However, RNNs
are commonly trained on a fixed number of sequential inputs
(e.g., evidence in favor of one choice). Thus, they have no
notion of decision time, a measure critical for understanding
natural human decision-making.

Here we develop a neural network architecture combin-
ing an RNN (representing the cortex; Mante et al., 2013)
trained to solve a perceptual decision-making task with a
controller network (representing the basal ganglia; Ratcliff &
Frank, 2012; Herz et al., 2016) trained to decide when to
stop accumulating evidence and commit a response. Balanc-
ing performance-based rewards against the costs of process-
ing time, this model displays a speed-accuracy tradeoff and
makes faster decisions as processing costs increase. This
architecture allows for a comparative investigation of neural
representations that emerge in artificial and natural decision-
makers.

RNN Controller model (RNNC)
Task Network (RNN)

We trained a network with 2 recurrently connected nonlinear
neurons to perform an analogue of the Random Dot Motion
Task (RDM; Mante et al., 2013) that required continuous ev-
idence accumulation (Fig. 1A). While small network size al-
lowed for full tractability, it can easily be increased in future
research. At each timestep, the network received noisy evi-
dence in favor of a left or right response (Lo & Wang, 2006;
Mante et al., 2013). Coherence was fixed (1.0) and could be

either positive or negative, determining the correct label (yt ;
left vs. right response), and noise was randomly sampled from
the fixed distribution at each timestep:

xt = coherence+Normal(0,σ = 0.5) (1)

We trained the network to predict correct labels (left vs. right
response) using backpropagation through time and cross-
entropy loss. Activity of the hidden layer at each step de-
pended on task inputs, previous hidden layer activity, and net-
work weights and biases:

ht+1 = F(xt ,ht ,wF) (2)

Hidden layer activity at each time point was read out through
a linear layer determining network’s response (ŷt ). We trained
5 Task RNNs to take a fixed number of steps on 8000 trials.
As expected, networks that took more steps (i.e., longer ev-
idence integration), achieved higher accuracy on 2000 held-
out test trials (Fig. 1B). Networks were trained on a fixed co-
herence level (-1 or 1), but their performance on test trials was
systematic across a wide range of coherence levels not expe-
rienced during training. This indicated that they have learned
to accumulate evidence, rather than memorize responses for
a coherence level experienced during training. Furthermore,
networks trained with more steps performed better across co-
herence levels as evidenced by steeper psychometric func-
tions (Fig. 1C). Hidden layer activity was randomly initialized
on each trial, and within-trial activity of the Task RNN trained
on 40 time steps (Fig. 1D) was used to train the Controller
network via reinforcement learning.
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Figure 1: A. Random Dot Motion task and network architec-
ture. B. Task RNNs trained to take more steps have higher
accuracy on the RDM task. C. Networks that take more steps
perform better across coherence levels. D. Single-trial and av-
erage activity of the Task RNN Neurons across time steps.

Controller Network
The Controller Network received hidden states activity of the
Task RNN at each time step and learned to decide whether



to take another step or commit a response at the current step
(Fig. 1A). It was trained to maximize rewards determined as:

R =


−stepcostt , if at = another step

+1, if at = respond now and yt ̸= yt

−5, if at = respond now and yt = yt

(3)

The cost of processing time at each step was implemented as
a function of a fixed step cost and the current time step:

stepcostt =
t

∑
i=1

cost × t (4)

We implemented the controller network (Fig. 1A) as a deep
RL agent (instantiated as actor and critic feedforward multi-
layer perceptrons) trained using Proximal Policy Optimization
(PPO; Schulman et al., 2017). The Controller Network learned
a policy mapping states (Task RNN unit activities) to actions
(take another step or respond at the current step).

Assuming a linear summation of evidence, the value-
maximizing number of processing steps depends on the cost
per step and the expected reward (Fig. 2A-white panel). In
the RDM task with the reward structure we deployed, a value-
optimal agent should reduce the number of steps it takes as
the cost per step increases (Fig. 2A-blue dots).

Results
We trained 10 networks with different step costs (0.0004-
0.004) on 10000 trials. The weights of the pre-trained Task
RNN were frozen and connected to the Controller Network.
When the Controller Network decided to stop, the response
was read from the Task RNN readout layer. These networks
formed the RNN Controller (RNNC) architecture (Fig. 1A).
The architecture was implemented in PyTorch (Paszke et al.,
2019) and trained using a custom Gymnasium environment
(Towers et al., 2024). Controller Network’s parameters were
optimized using stochastic gradient descent.

The RNNC model decreased the number of steps it took
(i.e., decision time) as the step cost increased. Average num-
ber of steps across 10000 trials of training (Fig. 2A-orange
dots) closely matched the value-maximizing number of steps
for the trials that the model was trained on (blue dots). Dif-
ferent step costs produced cost functions that varied in how
flat they are around the maximum (Fig. 2A heatmap). Thus,
for some costs the area around the maximum had similar ex-
pected values (e.g., left-most cost), while others had more
peaked value maxima (e.g., right-most cost). The RNNC
model displayed more variability in steps taken (error bars
represent standard deviations) when trained with step costs
producing flatter cost functions.

As RNNC models with different step costs took different
number of steps during task performance, their decision accu-
racy changed. Increasing the number of steps (i.e., decision
time) led to an increase in average accuracy across trials (Fig.
2B). Thus, the model displayed a speed-accuracy tradeoff, a
core characteristic of human decision-making (Heitz, 2014).

Conclusions

Here we introduce the RNNC architecture which leverages re-
inforcement learning on RNN activity to decide when to com-
mit to a decision. We connect previous work using feed-
forward and hand-tuned control architectures (Botvinick et
al., 2001; Simen et al., 2006) with recent machine learning
approaches to estimate reaction times (Goetschalckx et al.,
2023). In so doing, we show that combining RNNs solving
decision-making tasks with a controller architecture optimized
via RL produces a behavior resembling human decision-
making.

In this preliminary work we focused on one control signal
(decision threshold; Bogacz et al., 2006), which is dynami-
cally regulated by the basal ganglia (Ratcliff & Frank, 2012;
Herz et al., 2016; Doi et al., 2020; Pagnier et al., 2024), and is
subject to RL, and one type of decision cost (time; (Bogacz et
al., 2006; Simen et al., 2006; Kurzban et al., 2013). However,
the RNNC model can easily be extended to study other con-
trol signals (e.g., feature-based attention) and representations
that modulate control signals (e.g., task difficulty, conflict, re-
ward). Thus, the RNNC model will allow for a systematic study
of representations that emerge in neural networks bounded
by human-like costs. This will allow for a more in-depth com-
parison of neural dynamics and representations that emerge
in human and artificial cognition. The immediate next step
will be to jointly train the Task and Controller Networks at dif-
ferent coherence levels in the RDM task. This will allow us
to investigate whether task difficulty representations emerge
in the model, and how they guide decision times and accu-
racy. Such investigation will allow for a direct comparison with
behavioral and neural data from human and animal decision-
making tasks.
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Figure 2: A. Optimal number of steps are calculated by con-
sidering the expected accuracy (under linear summation of ev-
idence), costs and rewards at each step. The average number
of steps taken by the RNNC model (orange; error bars are
standard deviations) reduces with increasing costs, closely
matching value-optimal steps (blue). B. The model trades off
decision time (i.e., number of steps) for task accuracy.
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