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Abstract
A central goal of sensory neuroscience is to build par-
simonious computational models that can both predict
neural responses to natural stimuli and reveal inter-
pretable functional organization in the brain. Statisti-
cal “component” models can learn interpretable, low-
dimensional structure across different brain regions and
subjects, but lack an explicit “encoding model” that
links these components to the stimuli that drive them,
and thus cannot generate predictions for new stimuli or
generalize across different experiments. The predictive
power of standard encoding models has improved sub-
stantially with advances in deep neural network (DNN)
modeling, but producing simple and generalizable in-
sights from these models has been challenging. To
overcome these limitations, we develop ”component-
encoding models” (CEMs) which approximate neural re-
sponses as a weighted sum of a small number of com-
ponent response dimensions, each approximated by an
encoding model. We show using simulations and fMRI
data that our CEM framework can infer a small number
of interpretable response dimensions across different ex-
periments with non-overlapping stimuli and subjects (un-
like standard components) while maintaining and even
improving the prediction accuracy of standard encoding
models.
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Introduction
Understanding the neural computations that allow people to
derive information from natural stimuli, such as speech and
music, is a fundamental goal of sensory neuroscience. This
task is challenging in part because natural stimuli are com-
plex and high dimensional and in part because sensory sys-
tems encode natural stimuli using a highly nonlinear stimulus-
response mapping.

Statistical component methods have proven useful in ad-
dressing the first challenge by revealing interpretable and low-
dimensional structure. For example, human fMRI responses
to natural sounds can be accurately approximated by a small
number (5-10) component response patterns, each reflecting
selectively for specific acoustic features (e.g., frequency, spec-
trotemporal modulation) and sound categories (e.g., speech,
music, singing) within distinct sub-regions of the auditory cor-

tex (Norman-Haignere et al. (2015), Boebinger et al. (2021)).
Component models, however, cannot predict responses to
new stimuli or generalize across different experiments testing
distinct stimuli and subjects because they lack an encoding
model that links neural responses to the stimuli.

Advances in deep neural network (DNN) modeling have
substantially improved the predictive power of standard en-
coding models across many different sensory and cognitive
systems (Yamins et al. (2014), Yamins & DiCarlo (2016), Kell
et al. (2018), Schrimpf et al. (2021)). Encoding model are typ-
ically fit by mapping a high-dimensional feature set, learned
by a pretrained DNN, onto a set of neural responses, using
a separate mapping for each response. Despite their impres-
sive predictive power, deriving generalizable scientific insights
from these models has been challenging, in part because they
learn a different high-dimensional mapping for each neuron,
electrode, or voxel.

To combine the strengths of these two approaches, we de-
velop ”component-encoding models” (CEMs) that synthesize
the respective benefits of these two approaches.

Model Definition
The input to a CEM is a collection of response timecourses,
concatenated as a ntime ×nchannel matrix, D, where the chan-
nel dimension could reflect any neural response (e.g., voxel,
electrode). Responses from multiple stimuli and subjects are
concatenated across the time and channel axis, respectively.

In a standard component model, the data matrix is approx-
imated as the product of a low-dimensional response matrix
(R: ntime × ncomponents) and weight matrix (W: ncomponents ×
nvoxels), where the weights determine the contribution of each
component to each channel (e.g., voxel):

D ≈ RW (1)

The solution to equation 1 is typically constrained by addi-
tional statistical criteria since matrix factorization is otherwise
ill-posed (accomplished here by maximizing non-Gaussianity
of the weights; Norman-Haignere et al. (2015)). Importantly,
the factorization is performed using statistical properties of the
data matrix alone without any information about the stimuli.

Encoding models are typically fit by approximating each
channel as the weighted sum of a high-dimensional feature
set, computed from the stimuli:

D ≈ NB (2)
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Figure 1: A Schematic of component-encoding model (CEM). See text for details. B Schematic showing the partitioning of
a single experiment into sub-experiments (blue on-diagonal blocks) with non-overlapping time-points/stimuli and subjects; off-
diagonal blocks are used for validation and test. C, D Prediction accuracy (correlation in test data) of simulated (C) and real
(D) fMRI data from two CEMs (blue bars) either partially (ρ = 0.9) or fully (ρ = 1) constrained by an encoding model, along
with standard component-only and encoding-only models (gray bars) (dotted line shows the noise ceiling). E CEMs recover
interpretable speech- (left) and music-selective (right) components from non-overlapping sub-experiments, closely matching
those inferred from component-only models with complete data.

where N is the feature matrix (ntime × n f eature, e.g., unit re-
sponses from a pre-trained DNN) and B (n f eature × nchannel)
maps from the features to the response, separately for each
channel.

We construct a CEM by approximating the low-dimensional
component response matrix, instead of the neural data di-
rectly, using an encoding model:

R ≈ RENC = NQ (3)

In our framework, we simultaneously encourage the encoding
model to explain the data while enabling the CEM to learn
low-dimensional structure that is not fully predictable by the
encoding model ( R ̸= RENC) by minimizing the following loss
with respect to the model parameters (R̂ENC, R̂,Q̂,Ŵ):

ρ||(D− R̂ENCŴ)||2F +(1−ρ)||(D− R̂Ŵ)||2F (4)

The first term fully relies on the encoding model, while the
second term is fully data-driven term, with ρ controlling their
relative strength. Critically, the component weights, Ŵ, are
shared between these two terms, which forces alignment be-
tween the constrained (R̂ENC) and unconstrained (R̂) compo-
nent responses.

Results
To demonstrate the utility of CEMs, we focus on an impor-
tant application: inferring components across different exper-
iments, testing distinct stimuli and subjects. Standard com-
ponent models cannot accomplish this task (as demonstrated

below) because there is no overlap between the time or chan-
nel dimension, and even if there is anatomical correspon-
dence, functional responses vary substantially with respect to
anatomy (Saxe et al. (2006)).

The data from two different experiments can be repre-
sented as a block-diagonal matrix (blue blocks, Fig.1B) with
off-diagonal blocks corresponding to the ”missing” stimuli from
each experiment. A successful CEM should make it pos-
sible to predict the missing data. To test this possibility,
we partitioned data from a single experiment into two ”sub-
experiments” as illustrated in Fig.1B. We trained the model
on these sub-experiments (blue diagonals), and used the re-
maining off-diagonal blocks for validation (green diagonals)
and test (red diagonals).

We tested our approach using simulations and real data
from a prior fMRI experiment (Norman-Haignere et al. (2015))
(11,065 voxels, 10 participants, 165 natural sounds). Simu-
lated data was designed to be similar to the fMRI data in SNR,
dimensionality, and encoding model prediction accuracy. Fea-
tures were extracted from the audio embedding of a DNN
pre-trained on a large set of natural sounds (CLAP; top 40
principal components; Wu* et al. (2023), Chen et al. (2022)).
We fit the CEM using 6 components, as in the prior study,
and compared its performance with a component-only model
(ρ=0) and encoding-only model (ρ=0 and Q equal to the iden-
tity matrix; results were similar when encoding models were fit
using ridge regression).

For both simulated and real data, we found that CEMs sub-



stantially outperformed our component-only model with pre-
diction accuracies approaching the noise ceiling (the ceiling
is high because voxel responses were averaged across time
and repetitions) (Fig.1C,D). Moreover, CEMs that allowed for
encoding-model error (ρ = 0.9) outperformed CEMs fully con-
strained by the encoding model (ρ = 1), which in turn out-
performed an encoding-only model that learned a separate
mapping for each voxel. This finding shows that CEMs can
out-perform standard encoding models both because CEMs
can discard unreliable, voxel-specific response variation and
because they can model low-dimensional structure that is not
fully predictable by an encoding model. The learned compo-
nents from our fMRI data exhibited clearly interpretable func-
tional and anatomical structure that closely matched those
from the original study using complete data (Fig.1E). For
example, we observed distinct music- and speech-selective
components that clustered in different regions of non-primary
auditory cortex.

These findings demonstrate that CEMs can synthesize the
strengths of component and encoding models, while over-
coming their weaknesses. Unlike standard encoding mod-
els, CEMs can explain responses across many different re-
gions, subjects, and experiments using a small number of in-
terpretable response dimensions, even when those response
dimensions are not fully explainable from an existing encoding
model. Unlike component models, CEMs can make predic-
tions for new stimuli, which enables successful generalization
across multiple experiments. Our framework is not specific to
sounds or fMRI and thus is likely to be broadly useful in mod-
eling neural responses to natural stimuli across many different
sensory and cognitive systems.
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