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Abstract
Illusory contours and shapes highlight the striking gap
between how natural and artificial vision perceive the
world. In this study, we show that a pattern recognition
model embodies a generative model that integrates per-
ceptual priors and the sensory processing. We introduce
a novel perceptual algorithm, Generative Perceptual
Inference (GPI), which iteratively updates the activations
by accumulating propagated error in the early layers.
Given a Kanizsa square as input to a deep neural network
(DNN) optimized for robust object classification, our
results show that running GPI led to the emergence of
edge-like patterns in the area of the perceived ’white
square’. Moreover, when GPI is applied to the same DNN
with Rubin’s vase image as input, it creates a vase-like
pattern, while GPI in a DNN with the same architecture
but optimized for face recognition creates face-like
patterns. Thus, we found the direct link between natural
image prior and perception of illusory contours and
shapes, through an image-computable algorithm that
captures experimental findings regarding processing
of illusions in animals and humans. More broadly, this
work reconciles the views of the visual cortex as both a
pattern recognition and a generative model in a unified
framework.
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Introduction
Integrating perceptual priors with sensory inputs, known as
perceptual inference, facilitates the brain’s interpretation of
ambiguous or complex stimuli by leveraging previously ac-
quired knowledge, stored as internal models, to enhance cur-
rent sensory processing. However, the neural mechanisms
that implement such a generative internal model remain elu-
sive. In contrast, the view of the brain as a pattern recognition
system has been successful in predicting the neural activity
patterns using DNNs and offers a (crude but well-defined)
mechanistic mapping to the stage of processing along the
ventral pathway (Yamins et al., 2014). However, this account
starts to fail in the face of challenging and degraded stimuli
(Geirhos et al., 2018), or even completely fails to explain vi-
sual illusions (Baker, Erlikhman, Kellman, & Lu, 2018).

We hypothesized that the network during pattern recogni-
tion training constructs an implicit internal model about the dis-
tribution of the data it was trained on (e.g. natural image prior
in the case of training on ImageNet). When faced with noisy,
degraded, or unusual stimuli, such as high-saturated images,
and using a proper inference algorithm, this internal model
can be queried for priors regarding this image to aid percep-
tion. The ability to access implicit priors imposes constraints
on network architecture, objective function, and the learning
rule (Kadkhodaie & Simoncelli, 2021; Toosi & Issa, 2023),
which could limit the functionality of the network. For instance,
denoiser autoencoders or other generative models fall short
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Figure 1: Generative perceptual inference A Training network:
Parameters of the feedforward DNN are tuned for robust ob-
ject classification, e.g. 1000-way classification on Imagenet.
Feedback network shown in gray is the error propagation net-
work used in BackPropagation (BP) or bio-plausible variants
of BP. B Neural activation updates according to GPI in the
same DNN. Activations xψ

t in the network are iteratively up-
dated by the integrating the adjusted propagated error eψ

t
through the feedback WFB. Error can be computed as mean
square difference to the pure sensory activation, or a target
value in last layer both denoted by y. For simplicity, the nor-
malizations for adjustment of the values are not included. α is
the learning rate for activation updates

on object recognition, and they do not provide a good expla-
nation for the pattern of neural activity in the brain (Schrimpf
et al., 2018). We aim to devise an inference algorithm that
can extract priors from a pattern recognition network. It is im-
portant to note that, in contrast to previous attempts to model
illusions, our model aims to adhere the main function of ven-
tral stream, i.e. object recognition, and shows direct image-
computable connection between illusory contours and shapes
and the priors. In particular, the DNNs used in this study were
neither specifically enhanced with feedback capabilities nor
optimized to detect or decode these illusory contours (Pang,
O’May, Choksi, & VanRullen, 2021); parameters were only
trained for robust object recognition.

Illusions such as Kanizsa’s square or Rubin’s vase (AKA
face-or-vase) have been studied for decades in animals, hu-



mans and in both healthy and neural disorders. Although
some viewed visual illusions as perceptual errors and others
linked them to perceptual priors, there is no precise mecha-
nistic explanation for why we perceive illusions. Research in
animals and humans suggests that 1) activity in early visual
areas represents the perceptual state when viewing a visual
illusion, and these activities build up over time (Lee & Nguyen,
2001; Parkkonen, Andersson, Hämäläinen, & Hari, 2008) 2)
Illusory counters only appear in superficial layers (layer 2/3)
but not in the input layer (layer 4) of early visual areas (Lee &
Nguyen, 2001; Shin et al., 2023) 3) feedback connections play
a causal role in inducing these activities in early visual areas
(Pak, Ryu, Li, & Chubykin, 2019). We hypothesized that these
mechanistic clues that are shared between species point to a
general framework for perceptual inference. In this work, we
introduce ”Generative Perceptual Inference” in which we pos-
tulate that in face of degraded, noisy or stimuli with unusual
statistics (e.g. high saturated in case of Kanizsa square and
Rubin’s face, inference prolongs as the result of accumula-
tion of perceptual priors stored in synaptic weights. We show
that a simple realization of GPI in an off-the-shelf feedforward
neural network trained for robust object recognition induces
the illusory contours and shapes in neural networks.

Generative perceptual inference in pattern
recognition networks

Architecture and training. Our objective is to design an in-
ference algorithm to integrate the priors learned during train-
ing. Usually, implicit priors are obtained through generative
models that are explicitly trained to estimate the prior, but
previous work showed that a feedforward neural network can
give access to implicit priors using the intrinsic feedback struc-
ture normally used for backpropagation of error (Toosi & Issa,
2023). Here, we show that in a feedforward architecture
trained for pattern recognition (robust object classification), we
can estimate the implicit prior by backpropagated error to the
early layers (results not included), thereby enabling the pat-
tern recognition model to exhibit inferential properties often
pertained to generative models (Figure 1 A).
Inference. In early layers, the backpropagated errors are ad-
justed and added to the current neural activation in early lay-
ers to obtain the updated inferred neural activation, and this
iteration continues until convergence (Figure 1 B). The error
function here need not be the same error function used during
training (object classification); rather, it can compute the error
to the representation of the pure sensory information.

Results
We took an off-the-shelf model of robust object recognition,
this model is capable of 1000-way image classification on Im-
ageNet and has already been shown to be a good predictor of
pattern of neural activity (Madry, Makelov, Schmidt, Tsipras,
& Vladu, 2018). Without any additional training, we feed it the
illusion-induced images (Kanisza square and Rubin’s vase)
and implement the GPI algorithm as explained above. Figure
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Figure 2: Generated inferred activity by GPI in response to
illusory images. A When the input is Kanizsa square, the up-
dated activity in the input to the inference channel is depicted
at iterations 20 and 40. B When the input is Rubin’s face, GPI
in the network that was trained for robust face (object) classi-
fication generates face-like (vase-like) patterns in the input to
the inference channel.

2 shows examples of activation patterns generated by GPI.
This induced activity in early layers captures the experimental
findings indicating the representation of induced contours and
shapes in ealy visual areas (Lee & Nguyen, 2001; Pak et al.,
2019). Moreover, GPI confirms the causal role of feedback in
integrating priors and inducing illusions is pivotal, as found in
optogenetic study in mice (Pak et al., 2019).

Conclusions
We show a pattern recognition model embodies a generative
model which we could query by our proposed inference al-
gorithm, accounting for experimental findings on processing
illusory contours and shape in animals and humans. Although
our model is not a dynamical model, it shows the principles be-
hind updating the activations over time, which could be lever-
aged in designing dynamical models to exhibit prior integration
over time. Our work is the first instance of directly showing
how natural image priors induce illusory contours and shape
in an image-computable model capable of object recognition.
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