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Abstract
How neural dynamics in prefrontal cortex lead to flex-
ible perceptual decisions is not fully understood. We
trained monkeys to discriminate the dominant color (sen-
sory input) of a red-green checkerboard and reached and
touched a target that matched the dominant color of the
checkerboard. Target configurations were randomized
to decouple color choice signals from action choice sig-
nals. Neurons in DLPFC covaried more with target con-
figuration and color choice compared to neurons in area
8 and dorsal premotor cortex (PMd). Neural trajectories
in DLPFC first separated as a function of target config-
uration, and then after checkerboard onset separate by
both color and action choice. To derive a mechanistic un-
derstanding, we trained a low-rank task recurrent neural
network (RNN) model and found that its PC trajectories re-
sembled those of DLPFC. Subsequent fixed-point analy-
sis of the RNN suggest that the sustained inputs from the
targets leads to two stable regions for target configura-
tion and subsequent color inputs from the checkerboard
leads to stable fixed points for the four possible combi-
nations of color and action choice (e.g, red and left etc).
Together, these results show that DLPFC likely mediates
flexible perceptual decisions, and posit a candidate input-
mediated dynamical mechanism.
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mensionality reduction; recurrent neural network

Perceptual decision-making involves discriminating sen-
sory input and selecting appropriate actions to achieve be-
havioral goals. However, depending on different contexts,
the same sensory input might lead to different behavioral re-
sponses or different stimuli might prompt the same behavior
(Okazawa & Kiani, 2023). Currently, we do not understand
1) which brain areas can support flexible decision-making,
and 2) the neural mechanisms that lead to flexibility. We ad-
dress these open questions by combining electrophysiological
recordings in macaque monkeys, dynamical systems analysis
and fixed-point structure of low-rank RNN task models.

DLPFC is a locus for flexible decision-making
We trained three macaque monkeys (T, Z, V) to perform a red-
green checkerboard discrimination task that demands flexible
association between sensory stimuli and actions (Fig. 1A,
(Chandrasekaran, Peixoto, Newsome, & Shenoy, 2017)). In
this task, monkeys discriminate the dominant color of a static
checkerboard composed of red (R) and green (G) squares pa-
rameterized by 14 signed color coherences (R-G)/(R+G) rang-
ing from almost all red (100%) to all green (-100%). Monkeys
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Figure 1: DLPFC neural dynamics likely mediates flexible percep-
tual decisions. (A) Behavioral task with two target configurations.
Config1: red left & green right (RL&GL). Config2: red right and green
left (RR&GL). (B) Choice is the XOR from color and target config-
uration. (C) Psychometric curve of each monkey as a function of
checkerboard signed color coherence. (D) PSTH of example units.
(E) Recording sites of Monkey V, T & V. (F) Percentage of units modu-
lated to context, color and choice in each recording area (A: anterior;
P: posterior; D: dorsal; V: ventral). Error bar: 99 percentile confi-
dence interval (G) PCA trajectories of recorded units. (G) PC3 & 4
trajectories vs time.

report their decision by touching the target of the correspond-
ing color. We randomized the target configurations on a trial-
by-trial basis and thus decoupled color choice (red vs. green)
from action choice (left vs. right). Notably, the three task vari-
ables: target configuration (context), color, and action choice
fulfills XOR constraints, where action choice can be computed
by the XOR computation of context and color choice or vice
versa (Fig. 1B). While the monkeys performed the decision-
making tasks, we recorded single neuron spike signals within
a wide range of DLPFC areas with linear multi-contact elec-
trodes and neuropixels.

All three monkeys learned the task. Psychometric curves
shown in Fig. 1C indicated monkeys made more errors for
more ambiguous checkerboards. While animals performed
this task, we recorded 3730 units (single neurons and multi-
units) in DLPFC using V-probes and neuropixels from 170 ses-
sions (118 in T, 19 in Z, and 33 in V).

Fig. 1D shows firing rates of example units in DLPFC av-



eraged according to color choice and action choice. DLPFC
neurons responded to the different target configurations (con-
texts), due to their selectivity to a combination of color and
choice (red left and green right) after target onset. After the
checkerboard onset, many units switched from encoding tar-
get configuration to encode all four possible combinations of
color and action choice; and finally, the neural activities sep-
arated based on action choice. Selectivity for these various
decision-related variables were found in all monkeys.

We recorded in a wide range of sites along the principal
sulcus including rostral and caudal DLPFC, and area 8 (Fig.
1E), with recording areas verified based on MRI. We calcu-
lated the percentage of units modulated by each task variable
within each recording area and found that color and context
signal decreases along anterior-posterior and ventral-dorsal
axes (Fig. 1F, errorbars denote 99% confidence intervals,
chi-square test, p < .001 for color choice, target configura-
tion and action choice). Color and target configuration effects
were stronger in Anterior and DLPFCv compared to DLPFCd
and area 8 (CIs do not overlap). The observed functional gra-
dients were not an effect of performance differences among
monkeys or sample size of different cortical areas as we only
chose correct trials in the analysis. Depth-dependent differ-
ences were observed in single neuropixel sessions.

Neural population dynamics in DLPFC solve
the XOR problem

We next examined the neural population dynamics in DLPFC
underlying the XOR computation. Low dimensional neural tra-
jectories derived from PCA on data pooled from all monkeys
showed that trajectories separated based on target configu-
ration and this signal sustained to checkerboard epoch (Fig.
1G-H). After the checkerboard onset, sensory evidence from
color is combined with the target configuration input in DLPFC
and leads to 4 fully separated neural trajectories according to
both color choice and action choice and thus solving the XOR
problem. Individual PCs were often mixtures of context and
choice (PC3) or context and color (PC4). (Fig. 1H).

Low-rank RNNs suggest an input mediated
dynamical mechanism

To understand the dynamical mechanisms underlying these
flexible decisions in DLPFC, we trained low-rank RNNs mod-
els with varying ranks to preform the same task (Fig. 2A
(Valente, Pillow, & Ostojic, 2022)). We found that the neu-
ral trajectories of the rank-4 RNN were the most similar to the
real DLPFC data. The PCA on RNN firing rates generated
similar results with neural trajectories separating based on tar-
get configuration after target onset and into 4 trajectories after
checkerboard onset (Fig. 2B). The autonomous dynamics of
the RNN only had a fixed point at the origin suggesting that
the system is input driven. We next analyzed the regions of
stability for the RNN while the inputs were present. After tar-
gets onset (black dots), each target configuration pushes the
dynamics to a region of stability, setting up two distinct initial
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Figure 2: low-rank RNN simulation (rank=4) of the XOR task. (A)
low-rank RNN schematic (B) PCA trajectories of the RNN recurrent
units during the task. (C) vector fields and trajectories of the RNN
from task beginning to checkerboard onset. (D) vector fields and
trajectories from checkerboard onset to the trial end.

conditions (Fig. 2C). After the checkerboard onset (magenta
dots), the color input further pushes the trajectories to two di-
rections on each target configuration (Fig. 2D). As a result,
4 trajectories separates at the end of the trial according to all
four combinations of color and action choice (e.g. red and
left).

The low-rank RNN recapitulated dynamics observed in
DLPFC. However, one difference is that color and target con-
figuration are relatively over represented within the RNN while
action choice signal is the strongest signal in DLPFC. In the
brain, DLPFC has feedforward and feedback interactions be-
tween other brain areas including premotor cortex , while the
RNN merely uses a nonlinear activation function to calculate
action choice. A multi-area RNN in which the output of the first
area is propagated to downstream areas will help address this
question further (Kleinman et al., 2023)

Conclusion
Our study reveals that neural dynamics in the macaque
DLPFC unmixes all the possible combinations of color and
action choice thereby solving the nonlinear XOR problem, and
thus flexible decision-making. DLPFC has stronger decision-
related signals than areas such as area 8 (putative FEF) and
PMd (data not shown). These results are a first of its kind
in-vivo demonstration of a functional organization of the pre-
frontal cortex for perceptual decisions. Such a conclusion
rests on using a task design where decision-making and motor
preparation signals are deliberately uncoupled. Future work
will 1) attempt to derive neuronal circuit motifs from these
dynamics (Langdon & Engel, 2022), and 2) use residuals to
assess if neural dynamics in the data match the dynamical
mechanism in the model (Galgali, Sahani, & Mante, 2023).
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