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Abstract
Convolutional neural networks (CNNs) have emerged as
leading models for primate object recognition, yet hu-
mans often outperform them, revealing misalignments
with human behavior and brain responses. This discrep-
ancy indicates unique brain-specific computations en-
gaged when object recognition is challenging. Here, we
leverage this gap to identify the human neural mecha-
nisms driving these computations. Specifically, we com-
pared EEG and fMRI responses to images on which a
feedforward CNN (AlexNet) and humans perform on par
versus images on which the CNN performs worse. We
find that for images where the CNN performs worse, hu-
mans show delayed information processing and the spe-
cific recruitment of frontal brain areas, suggesting the
involvement of additional top-down recurrent computa-
tions. These results pinpoint the neural mechanisms be-
yond feedforward processing engaged for robust object
perception when vision is challenging.
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Introduction
Primates can rapidly and accurately recognize objects
(DiCarlo, Zoccolan, & Rust, 2012) despite varying viewing
conditions. Currently, the best family of models of biological
vision are CNNs (Cichy, Khosla, Pantazis, Torralba, & Oliva,
2016; Cichy & Kaiser, 2019; Schrimpf et al., 2018; Yamins et
al., 2014), yet they are far from being fully aligned with human
behavioral and brain measures (Geirhos, Meding, & Wich-
mann, 2020; Rajalingham et al., 2018; Wichmann & Geirhos,
2023). Further, even seemingly identical behavior might be
driven by vastly different mechanisms in CNNs and primate
brains (Kar, Kubilius, Schmidt, Issa, & DiCarlo, 2019; Kar & Di-
Carlo, 2021; Kietzmann et al., 2019; Kreiman & Serre, 2020).
However, such instances of model-brain misalignment present
the opportunity to experimentally probe the engagement of
specific mechanisms in human brains that current models
lack, allowing for a more precise characterization of human
object recognition. Here, we compare how the human brain
processes objects in response to image stimuli that are be-
haviorally aligned versus misaligned between a CNN and hu-
mans, following the approach developed by Kar et al. (2019).
Specifically, we selected two sets of images: one on which
the recognition performance of both systems was comparable
(control images), and another on which humans largely out-
performed the CNN (challenge images). We then measured
EEG and fMRI responses to both image sets. We used mul-
tivariate pattern analysis to compare object information in the
brain across time and space for the two image sets. Our re-
sults revealed a delayed emergence of object information in
EEG sensor space and engagement of additional frontal brain
regions, specifically in the case of challenge images. This
additional time might be due to the recurrent processing of in-
formation involving top-down interactions between frontal re-
gions and the sensory cortices.

Methods
Stimuli
We used a set of 1320 images, each containing one of 10 ob-
jects (Kar et al., 2019). Each image was either a photograph
(from MS COCO; (Lin et al., 2014)) or contained a synthetic
object rendered with a combination of transformations (i.e.,
size, rotation, and position) on a natural background.

Behavioral experiment
We used behavioral data collected from 88 participants per-
forming a binary object discrimination task on Amazon Me-
chanical Turk (Kar et al., 2019). In each trial, the target im-
age appeared for 100 ms, followed by a 100 ms blank screen.
Then, a response screen showed a canonical version of the
target object alongside an alternative distractor object. The
subjects’ task was to correctly identify the target object.

Selection of challenge and control images
We compared participants’ image-by-image performance with
AlexNet (Krizhevsky, Sutskever, & Hinton, 2012) to determine
the challenge and control images. First, we identified chal-
lenge images as those for which humans exceeded AlexNet’s
performance by more than 1.5 d’, and control images as those
for which the absolute difference in performance did not ex-
ceed 0.4 d’ (Fig. 1A). Next, we created a smaller, final stimulus
set for the EEG and fMRI experiments. For this, we matched
each challenge image with a control image that best matched
the human behavioral scores. This process yielded two sets
of 121 images each, with no significant difference in human
performance between them (u(120)=8155, p=0.13) but a sig-
nificant difference in CNN performance (u(120)=41, p<0.001).

EEG experiment
35 participants (23.5 ± 4.1 years old, 28 female) took part in
the EEG study. We recorded brain responses to each image
in both the challenge and control sets using 64 channels (68
repetitions per image). We presented images using a rapid
serial visual presentation paradigm: trains of 14 images were
presented in random order (200 ms on, 100 ms off). The task
was to report after each image train whether a catch image (a
paper clip) was presented (probability 0.42).

fMRI experiment
31 participants (27 ± 4.8 years old, 21 female) took part in the
fMRI study. As in the EEG, we recorded brain responses to all
images (8-10 repetitions each). On each trial, we presented
an image for 500 ms, followed by a 2500 ms blank screen.
The task was to respond to a change in fixation cross color
interspersed between the main trials (probability 0.25).

Statistical analysis
We conducted multivariate pattern analysis (Haxby, Connolly,
& Guntupalli, 2014) on both EEG and fMRI data to investi-
gate the temporal and spatial dynamics of object information,
respectively. To assess the significance of the identified pat-
terns, we performed sign-flipping tests (10,000 iterations). We



Figure 1: Main results. A) Comparison of Human and AlexNet’s performance. B) Time course of object decoding. C) Temporal
generalization of decoders. D) Object decoding in different brain regions.

adjusted all results for multiple comparisons using Bonferroni
correction.

Results
EEG analysis reveals that object representations
are delayed for challenge vs. control images.
To assess the temporal dynamics with which visual repre-
sentations emerge we performed a decoding analysis of the
EEG data. We tested cross-validated support vector machine
(SVM) classifiers to discriminate the 10 objects within a tem-
poral window of -50 ms to +500 ms around stimulus onset with
a bin size of 5 ms.

We first conducted the decoding analyses separately for the
challenge and control images and compared the results. De-
coders trained and tested on the same time points (Fig. 1B,
blue and red lines) accurately identified objects in both sets
starting at 90 ms after stimulus onset (all ps<.001). However,
the time courses also differed significantly from 90 to 220 ms
(yellow line, all ps<.001), indicating differences in processing.

Next, we cross-decoded across stimulus sets. This was
possible in a similar time frame as within-set decoding, ex-
cept between 140-190 ms (Fig. 1B, orange and cyan lines),
revealing a divergent pattern of object processing during this
intermediate interval.

Finally, we performed temporal generalization analyses
(King & Dehaene, 2014) by training and testing classifiers
at all possible time point combinations. In both challenge
and control sets, within-set decoding revealed symmetric pat-
terns predominantly along the diagonal, as expected. In addi-
tion, limited off-diagonal significant generalization indicates a
highly dynamic sequence of object representations (Fig. 1C,
above). In contrast, across-set decoding revealed an asym-
metrical pattern: decoders trained on control images general-
ized better to later time points when tested on challenge im-
ages (Fig. 1C, lower-left; peak at 240 ms training time, 265 ms
testing time). This pattern is reversed when cross-validation is
done in the opposite direction (Figure 1C, lower right; peak at
275 ms training time, 250 ms testing time). This effect is de-
tectable starting around 150 ms after stimulus presentation. In
both cases, peak decoding was located off-diagonal (p<.05).

This shows that similar object representations emerge later for
the challenge images than for the control images.

fMRI analysis reveals object information in frontal
areas only for challenge images.

To determine how object representations differ for challenge
versus control images spatially, we analyzed fMRI data focus-
ing on 11 key areas from the HCP atlas (Glasser et al., 2016),
including visual and frontal regions. Akin to the EEG analysis,
we used within and across-set decoding to analyze the data.
We found significant object decoding within and across both
image sets in the visual ventral stream areas (V4, IT, LOC)
and the medial temporal cortex (all ps<.001), as expected.
However, in frontal regions (mPFC, OFC, vlPFC and dlPFC)
object information was only present for challenge images (all
ps<.001), and cross-set decoding was not possible (Fig. 1D,
all ps>.05). These results suggest that frontal brain regions
are recruited for object recognition when processing challenge
images.

Conclusion

By utilizing the misalignment in object recognition perfor-
mance between humans and a baseline feedforward CNN
model, we identified stimuli sets that are processed differently
by the brain. Our findings support four key conclusions. First,
the differences in information processing between these sets
reflect the engagement of distinct brain mechanisms charac-
terized by unique temporal dynamics and the recruitment of
specific brain regions. Second, these mechanisms may in-
volve recurrent computations for challenging images, as pro-
cessing diverges at intermediate stages and later converges
into similar representations, albeit with a delay. Third, in such
cases, information processing extends beyond the ventral vi-
sual stream, including frontal regions, suggesting the involve-
ment of long-range feedback. Finally, the brain demonstrates
flexibility in engaging these mechanisms, depending on the
sufficiency of feedforward processing alone to accomplish ob-
ject recognition tasks.
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