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Abstract

Human perception remains robust under challenging
viewing conditions. This robustness in perception has
been linked to nonlinear processing of visual inputs.
Here, we combine human EEG, behavior and deep neu-
ral network modeling to examine the joint impact of two
nonlinear response properties, namely temporal adapta-
tion and contrast gain, on perception of objects embed-
ded in temporally repeated noise. We observe an interac-
tion effect, with higher categorization performance when
adapting to noise for high, but not lower object contrast
levels. This improved performance is associated with
more pronounced contrast-dependent modulation of the
evoked neural responses and enhanced decoding of ob-
ject identity. Using deep convolutional neural networks,
we demonstrate that interaction effects between temporal
adaptation and contrast level are effectively captured by
temporal divisive normalization. Moreover, examining the
network representations reveals that, similar to the neu-
ral data, adapting to the same noise results in improved
representations of the object due to noise suppression.
Overall, our findings shed light on how benefits of tem-
poral adaptation are influenced by contrast level and offer
an intuitive framework to study the integration of nonlin-
ear response properties and their impact on perception.
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Introduction

Our perception of sensory inputs depends heavily on nonlin-
ear computations evident in various neural response prop-
erties, including temporal adaptation (reduced responses to
repeating stimuli, Fig. 1A, left) and contrast gain (the sig-
moidal relationship between stimulus contrast and the neural
response, Fig. 1A, right). While these phenomena have each
been studied extensively in isolation, their joint impact on per-
ception, as well as the underlying computational mechanisms
that give rise to neural responses and perceptual outcomes, is
unclear. To study the joint impact of temporal adaptation and
contrast gain on human visual perception, we collected neural
and behavioural measurements while humans performed an
object classification task with temporally repeated noise pat-
terns, whereby the contrast of the object was varied. We en-
dowed deep convolutional neural network (DCNN) with tem-
poral adaptation mechanisms and evaluate their ability to pre-
dict human performance and EEG responses. We specifi-
cally compare temporal divisive normalization, a biophysically-
realistic canonical computation that has been shown to cap-
ture nonlinear neural dynamics (Heeger, 1992, 1993), with
other types of temporal dynamics that have been introduced
to DCNNs previously (Vinken et al., 2020), namely an addi-
tive suppression mechanism and lateral recurrence.

Figure 1: Experimental design. A: Nonlinear neural response prop-
erties. B: Classification task on objects (MNIST digits) in temporally
repeated noise pattern. C: The contrast of the object is varied.

Experimental procedure
Data collection
Human subjects (n = 21) classified objects (MNIST, Deng
2012, classes 3, 6, 8 and 9) embedded in pixelized noise pat-
terns (Test, Fig. 1B) with varying contrast (Fig. 1C). Each
Test stimulus was preceded by an Adapter, a noise-only pat-
tern that consisted of either the same or different noise as
presented during Test. Neural activity was measured using
electrocorticography (EEG), from which we computed event-
related potentials (ERPs) for a time window of [-100, 500] ms
relative to the stimulus onset of the Test image and averaged
trials within adapter types (i.e. same or different) and contrast
levels, separately for each participant.

Computational modeling
DCNNs were trained on the same task as performed by hu-
man participants. All DCNNs contained three convolutional
layers, a fully connected and a readout layer, with one time
step t defined as one feedforward sweep. A training sample
consisted of an image sequence, starting with the Adapter (t1),
a gray-scale image (t2) and the Test (t3). We define a linear
response Ln(t) as the output of convolutional layer n:

Ln(t) = wn ∗xn−1(t)+bn (1)

given the unit’s current input xn−1(t), bottom-up convolutional
weights Wn and biases bn. We compared four different tem-
poral dynamics, two of which have been introduced previously
(Vinken et al., 2020), namely additive suppression (AS) and
lateral recurrence. For the lateral recurrence we implement
an additive (LRA) and multiplicative (LRM) form. In addition,
we introduce a biologically-realistic implementation of tempo-
ral adaptation, known as divisive normalization (DN), inspired
by previous work (Heeger, 1992), as follows:

For each unit i in the network the response is updated over
time before applying the rectifier activation function φ so that

ri(t) = φ

(
⌊Li(t)⌋

√
K −Gi(t −1)

σ

)
(2)



Figure 2: Human and DCNN recognition performance. A: Mean per-
formance across human subjects for same (blue) and different (yel-
low) noise trials for each contrast level (left), and mean DCNN perfor-
mance across multiple initializations (n = 5) (right). B: A DCNN with
divisive normalization accurately captures human performance (left)
by means of a variable gain mechanism (in the form of parameter K)
which takes into account contrast (right).

where K determines the maximum attainable response, σ a
semi-saturation constant and Gi(t − 1) a temporal feedback
signal from the previous time step, which is updated based on
its previous state and the previous response:

Gi(t) = (1−α)Gi(t −1)+αri(t −1) (3)

where α determines the time scale of the feedback signal.
This multiplicative feedback signal results in divisive suppres-
sion (for details, see Heeger 1993, Appendix A).

Results
Interaction between contrast and adapter type is captured
by a DCCN with divisive normalization. In humans, we
observe an interaction between temporal adaptation and con-
trast level: adapting to the same noise pattern improves accu-
racy for higher but not lower object contrasts (Fig. 2A, left).
Training DCNNs with additive or lateral recurrent forms of tem-
poral adaptation shows that network performances match hu-
man behaviour for higher but not lower contrast levels, with
DCNNs showing the strongest benefits of adaptation for low
rather than high object contrasts (Fig. 2A, right). However,
a DCNN with divisive normalization better captures the inter-
play between the adapter type and contrast by allowing for the
implementation of a variable gain mechanism (Fig. 2B, left).
More specifically, we take into account contrast level by vary-
ing the maximal attainable value (K) for the first convolutional
layer based on a contrast response function (CRF, Fig. 2B,
right) following the Naka-Rushton equation (Naka & Rushton
1966). As a result, the adaptation benefits performance most
in contrast ranges for which the responses are not plateau-
ing. These results show that temporal adaptation is beneficial
only for higher contrast levels, which is accurately captured by
a DCNN with divisive normalization as an adaptation mecha-
nism but not intrinsic suppression or lateral recurrence.

Figure 3: EEG responses and neural network activations. A: Top,
ERPs to Test images at occipital-parietal electrodes for same (left)
and different (right) noise trials per contrast level. Bottom, Response
magnitude per contrast level computed by the Area Under the Curve.
B: Object decoding accuracy performed on the ERPs of Test images
after adaptation to same or different noise. C: Ratio of mean activa-
tions between DCNN units representing the object or the surrounding
noise for averaged feature maps in the first convolutional layer.

Benefit of temporal adaptation is mediated by improved
representation of the object. Analysis of the EEG data
reveals that adaptation to the same noise results in more
pronounced contrast-dependent modulation of the neural re-
sponses compared to adaptation to different noise (Fig. 3A).
To examine whether adaptation influences neural object rep-
resentations, we fitted a linear classifier predicting the digit
class based on the ERPs evoked during presentation of the
Test image. Results show that adapting to the same noise re-
sults in more prolonged significant decoding accuracy’s (Fig.
3B), suggesting the object is more clearly represented in the
neural signal as a result of adaptation. Examining DCNN ac-
tivations shows that the behavioural benefit of adapting to the
same noise is associated with improved representations of the
object due to suppression of the surrounding noise (Fig. 3C).
We quantify this by computing the ratio of mean activations be-
tween units representing the object and units representing the
noise by applying masks, which shows that object representa-
tions for same noise trials shows a steeper increase compared
to different noise trials as the contrast level increases. These
results suggest that adapting to noise results in improved ob-
ject representations in the brain, which matches improved rep-
resentations reflected in DCNN activation patterns.

Conclusion
Benefits of temporal adaptation on recognition of objects in
noise depend on contrast level, which is accurately captured
by a DCNN with temporal divisive normalization.
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