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Abstract
The hippocampus is known to flexibly represents spa-
tial and non-spatial features of the environment in a
task-dependent manner. However, the underlying neu-
ral mechanisms governing this contextual adaptability
remain elusive. To investigate this, we trained artifi-
cial neural networks (ANNs) to perform a navigation-
dependent associative memory task mirroring the one
performed by macaque monkeys. Using the unit activi-
ties of these models, we constructed predictive models
of macaque monkey CA3 neurons and measured which
types of model better capture the neural computation
within the hippocampus. Our results reveal that spatially-
tuned neurons predominantly code linear feature com-
binations, while non-spatially tuned neurons are better
explained by non-linear spatiotemporal feature combi-
nations. Moreover, we show that an ANN trained for
a navigation-dependent associative memory task learns
non-linear spatiotemporal representations that are sub-
stantially more aligned with those in the hippocampus
compared to alternative models. Altogether, our results
shed light on the nature of selectivity across multiple
feature dimensions by revealing that the linear and non-
linear mixing of features by distinct hippocampal neu-
rons matches surprisingly well with their tendency to be
spatially-tuned or not.
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Introduction
The hippocampus is known for its role in memory and spa-
tial navigation (Eichenbaum & Cohen, 2014). Recent studies
have promisingly shown that a range of its specialized spatial
cells—such as place, and border cells—can emerge in ANNs
(Whittington et al., 2020). However, how spatial and non-
spatial information interact within the hippocampus remains
a subject of debate. To this end, we constructed predictive
models of hippocampal neurons and investigated which model
better captures the neural computation governing those dy-
namics.

Methods
Neuronal Dataset. Gulli et al. (2020) recorded the activity
of single hippocampal neurons in macaque monkeys’ area
CA3 while they performed a navigation-dependent associa-
tive memory task (Fig 1). The task required monkeys to learn
an association between goal-objects appearing at the end of
a maze and a context cue determining the reward values as-
sociated with those objects. The animals aims to navigate to
the object offering the highest reward.
Neural network models. We tested neural networks em-
ploying two distinct memory mechanisms. Both models were
trained using reinforcement learning, Actor-Critic, within a vir-
tual environment replicating the associative memory task per-
formed by the macaque monkeys (Fig. 1 top). They also both

Figure 1: Associative memory task and neural predictivity
analysis

received egocentric visual input through a convolutional neu-
ral network (CNN). The first model, Episodic Planning Net-
work (EPN), was proposed to rapidly adapt to novel environ-
ments during navigational and spatial memory tasks (Ritter et
al., 2020). To achieve this, EPN utilizes an episodic memory
via iterative application of a multi-head attention layer. The
second model, Reward-optimized artificial recurrent network
(ROARN), includes a LSTM and utilizes its memory through
recurrent connections. Both models achieve an optimal per-
formance on the task
Neural predictivity. To predict hippocampal neural activity,
we employed a previously used approach for comparing ANN
activations to the neural activity of the visual (Yamins et al.,
2014), motor (Sussillo et al., 2015), and auditory cortices (Kell
et al., 2018) (Fig. 1 right). We subjected the artificial agent to
the same trial sequences experienced by the animal subjects.
We then performed a linear regression analysis using a linear
SVM (Support Vector Machine) to predict the neurons’ firing
rates from the model’s unit activations. The neural predictiv-
ity score was obtained by computing the Pearson correlation,
ρ, between predicted and actual firing rates. The neural pre-
dictivity gain of a model is the neural predictivity added upon
the neural predicitivity obtained from an untrained ROARN as
baseline.

Results

Task-specific spatial tuning emerges in both hippocam-
pus and ANN. We found that 52± 1% of hippocampal neu-
rons exhibit at least one spatial response field (Fig 2a). Quan-
tifying the coincidence of spatial response fields in neurons
with a minimum of two spatial response fields reveals a ten-
dency for these neurons to exhibit significantly elevated fir-
ing rates at multiple locations that hold functional equivalence
within the task structure, manifesting as symmetrical tunings
for this task (Fig 2b). This task-dependant spatial distribution,
previously observed by Gulli et al. (2020), also emerges nat-
urally within ANN models, without any constraint or module
designed to replicate this phenomenon (Fig 2b,c).

While 100 ± 0% of units with random weights exhibit at
least one spatial response fields, only 12± 0% of those un-
trained units are specifically selective for locations holding
task-equivalent functions (Fig 2a). In contrast, 56 ± 2% of
spatially-tuned neurons are tuned to those task-equivalent lo-
cations. Optimizing ROARN to perform the associative mem-



ory task more than doubles the percentage of spatially-tuned
neurons that are tuned at task-equivalent locations, increas-
ing from 12±0% of spatially-tuned untrained units to 27±4%
of spatially-tuned units (Fig 2a). Moreover, learning the task
flattens the distribution of spatial response fields per unit and
breaks the complete absence of non-spatially tuned untrained
units (0±0%) by converting 30±1% of these units into non-
spatially tuned units (Fig 2d). In short, while learning the
navigation-dependent associative memory task, the units nat-
urally remapped into task-specific spatial tunings similar to
those observed in hippocampal neurons (Fig 2d).

Figure 2: Spatial tuning. a) Percentage of units/neurons with
at least one spatial responses fields or with spatial responses
fields in locations that are task-wise equivalent. b) Examples
of six neurons and units spatially-tuned at task-equivalent lo-
cations across the maze. c) Locations of coincident spatial
response fields. d) Number of spatial response fields per
unit/neuron. Similarity and distance between the spatial re-
sponse field count distribution in models and neurons. N,
north; S, south; W, west; E, east. Mean ± Std over 3 ran-
dom seeds.

Neurons tendency to encode linearly or non-linearly is re-
lated to their spatial tunings. The hippocampus serves as
a hub for integrating a variety of highly processed information,
encompassing spatial, temporal, visual, olfactory, and audi-
tory stimuli (Eichenbaum, 2017; Itskov et al., 2012; Save et
al., 2000) and these highly refined representations are thought
to be key to the hippocampus representations. To better cap-
ture this role of hippocampus, we propose an ideal observer
model that incorporates all relevant variables, including loca-
tion, direction, visual cues, decision, and reward. With this
model, we predicted the neural responses of each individual
neuron and measured the contribution of each type of feature

through its corresponding fitted weight. While non-spatially
tuned neurons rely significantly more on non-spatial features
(Fig 3a non-spatial features, P < 1 × 10−7, Wilcoxon rank-
sum test), spatially-tuned neurons exhibit strong encoding of
task phases (Fig 3a task phases, P < 1× 10−35, Wilcoxon
rank-sum test) which are partly associated with spatial loca-
tions. Interestingly, we observed that spatial features exhibit
similar weights, with slight higher average for non-spatially-
tuned neurons (Fig 3a spatial features, P = 0.011, Wilcoxon
rank-sum test).

Figure 3: Neural predictivity. a) Average weights for linear re-
gression from Ideal observer. b) Neural predictivity gain per
model grouped by spatially- and non-spatially tuned neurons.
c) Average neural predictivity gain. d) Distance between neu-
ral predictivity gain of ideal observer and ROARN. Mean ±
Std over 3 random seeds.

The ideal observer consists of linear combinations of task-
relevant features, where as ROARN receives essentially the
same information, but employs multiple non-linear layers.
Surprisingly, linear combinations of task-relevant features
predicts responses of spatially-tuned neurons similarly to
ROARN (Fig 3b spatially-tuned neurons, ρ = 0.76±0.01,P <
1× 10−16), while comparatively performing poorly with non-
spatially tuned neurons (Fig 3b non-spatially tuned neurons,
ρ = 0.43± 0.02,P < 1× 10−3). Consequently, the gap be-
tween ROARN and ideal observer widens considerably for
non-spatially tuned neurons, indicating a greater reliance on
non-linear computations for those neurons (Fig 3c,d). In sum-
mary, we observed that neurons with spatial tuning are of-
ten explained well by linear combinations of task-relevant fea-
tures, whereas neurons without such tuning often encode
non-linear mixtures of factors, which can still include spa-
tial information. We hypothesize that this dichotomy may
stem from established spatial tuning being obscured by non-
linear computations, thereby promoting the two distinct pro-
files: spatially-tuned neurons characterized by linear repre-
sentations and non-spatially tuned neurons characterized by
non-linear representations.
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