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Abstract
Although recurrent neural networks (RNN) are now ubiq-
uitously used by brain scientists to model neural dy-
namics and behavior, they are not a priori guaranteed
to mimic animals’ behavioral strategies. One reason is
a fundamental model mismatch: Unlike RNNs, animals
are not cognitive blank slates at task start, but they have
learned through extensive prior experience. We address
this issue by pretraining RNNs on tasks that mimic ani-
mals’ prior inductive biases, in particular with simple cog-
nitive “kindergarten” tasks that can be combined to per-
form more complex tasks. Using a rich decision-making
task with latent states previously used to train rats,
we demonstrate that only RNNs that incorporate kinder-
garten tasks into their training reflect rat-like strategies.
Mechanistically, we find that the dynamics of pretrained
networks are richer than those obtained with other train-
ing strategies, and that these dynamics develop during
kindergarten pretraining. Overall, our approach demon-
strates a simple strategy for improving RNNs as models
of cognition in animals, opens up interesting questions
about how previous experience shapes computational
strategies that animals adopt, and provides testable pre-
dictions for neural recordings.

Keywords: curriculum learning, decision making; deep learn-
ing; dynamics; RNN

Introduction
We addressed the mismatch in prior experience between an-
imals and RNNs by creating a novel curriculum learning (CL)
paradigm that explicitly trains models first on a set of use-
ful, basic computational skills (Fig. 1). These computational
“building blocks” (e.g. memory, inference, evidence integra-
tion, etc.) reflect previous experiences of an animal, which
are then combined via behavioral shaping towards a target
end goal. We term this initial phase of training as kinder-
garten curriculum learning, to highlight that these tasks are
fundamental in nature, and capture general knowledge or ap-
titudes that an animal likely brings to any experiment. Our ap-
proach increases task difficulty over training, similar to CL. It
also uses tasks with shared underlying structure to the target
task, similar to meta-learning. It is unique in that it harnesses
a compositional view of complex tasks, in which simpler com-
putational elements can be trained first, with simpler means,
and reused on related tasks.

previous experience 
“building block” tasks

kindergarten behavioral shaping

identify and link relevant subtasks

target task

Figure 1: Kindergarten CL approach to incorporate prior ex-
perience into RNN models for complex tasks.

Methods
Task

As a complex target task, we adapted a willingness-to-wait
paradigm recently studied in rats to RNNs (Mah, Schiereck,
Bossio, & Constantinople, 2023) (Fig. 2A). Here, RNNs wait
for reward of a known offer R, but with an unknown delay
drawn from an exponential distribution (mean λ = 2.5s). RNNs
can either wait for reward to arrive, or opt-out to begin a new
trial. 1− pr = 20% of offers are withheld to force the opt-out
option (“catch trials”). There is a long-timescale, latent block
structure to reward offers that must be inferred, which changes
in an uncued fashion after an average of around 40 trials (Fig.
2B). R = 20 is present in each block, and behavior on those
trials across blocks quantifies sensitivity to inferring the latent
context. Wait times on catch trials reflect two primary features
in rats and well-trained RNNs (Fig. 2C): wait times are linearly
sensitive to log-reward, and are also sensitive to context, wait-
ing longer for R = 20 in low blocks compared to high blocks
(i.e., wait time ratio). We also modeled this task as a Markov
decision process (Constantino & Daw, 2015), and found that
the optimal wait time is log-linear in reward offer, and is nega-
tively biased by the average reward earned in a block R(B)

av :

t∗ = λ(log[Rpr]− log[R(B)
av λ]). (1)

Model and Training

We used a two-layer LSTM network to model contributions
from orbitofrontal cortex (OFC) and striatum (STR), which out-
puts a probability of waiting πt , and estimated state value Vt
(Fig. 2D). The RNN was trained using deep meta-RL with ad-
vantage actor critic (A2C), and a policy entropy loss term to
encourage exploration (Wang et al., 2018). We used deep
meta-RL since it well-captures the observed, persistent repre-
sentations of reward history in OFC that support trial-by-trial
learning (Constantinople et al., 2019; Hocker, Brody, Savin, &
Constantinople, 2021). Deep meta-RL was used to train dur-
ing the wait time task; kindergarten subtasks were trained to
reproduce supervised targets with their outputs o, as well as a
perform a classification task with pblock. Inputs reflect transient
trial start and offer (St), as well as the previous timestep’s ac-
tion (at−1) and reward (rt−1). During final task training, kinder-
garten tasks acted as regularizers to our total loss function.
These tasks were inspired by decomposing the wait-time task
into putative sub-computations of i) working memory ii) count-
ing elapsed time, iii) stimulus integration, and iv) state infer-
ence (Fig. 2E, top). We then built a CL sequence to first
train on kindergarten tasks, followed by training stages using
behavioral shaping strategies that were explicitly used in rat
training, then on the target task (Fig. 2E, bottom).

Results
We found that RNNs trained with kindergarten CL captured
the key aspects of rat behavior and optimal strategies: log-
linear offer sensitivity, and context sensitivity (Fig. 2C, right).
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Figure 2: A Target wait-time task performed in RNNs. B Latent block structure in task. C Example wait time behavior on catch
trials in sample rat (left) and a well-trained RNN (right). D Model architecture. E (top) Kindergarten subtasks that incorporate past
experience. (bottom) Kindergarten CL training. F All curricula studied. G (top) Task performance by curriculum type, averaged
across RNNs (* p<0.05, *** p<0.001, rank-sum test). (bottom) Wait time ratio over training, where < 1 reflects rat-like behavior.

Compared to other CL types (Fig. 2F), kindergarten CL
achieves higher reward rates in the task, and displays the rat-
like context sensitivity(Fig. G). Other forms of CL showed ei-
ther no sensitivity to blocks, or opposite effects in which RNNs
waited longer for rewards in high compared to low blocks. We
also found that pretraining on irrelevant sub-tasks did not re-
sult in rat-like behavior (not shown). Overall, we found that
only kindergarten CL reproduces rat behavior, suggesting that
rats’ inferential strategies can be captured with structured pre-
training on subtasks relevant to target behavior.

We then studied the dynamical systems underlying well-
trained RNNs. Using a PCA projection on the top two PCs
(which often captured > 90% variances in many RNNs),
we both empirically calculated the dynamical flow fields, as
well as the linearized dynamics around fixed points and slow
points. Variability existed in the geometry of the dynamics
across RNNs (N=46), but overall we found a common mo-
tif in both OFC and STR dynamics. OFC dynamics trained
with kindergarten CL had clear representations of blocks in
which point attractors were always present in low blocks, high
blocks were supported by either line or point attractors, and
mixed blocks contained a saddle (Fig. 3A). Importantly, this
motif was not seen in RNNs trained with simpler curricula
(not shown). When conditioning STR inputs on a given block
type, we found STR point attractors whose location in PC
space reflected the probability of waiting (Fig. 3B). Lastly, we
tracked the number of such dynamical features over training,
and found that OFC dynamics had a large growth of them dur-
ing their kindergarten tasks that were then consolidated in the
target task (Fig. 3C), an effect recently observed in (Marschall
& Savin, 2023). Finally, we found that kindergarten CL had dy-
namics with significantly more features than behavioral shap-
ing alone (p = 10−4 KS test). In summary, these results make

a future testable prediction about the types of neural dynamics
used to support inference-based decision making in rats.
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Figure 3: A Representative dynamics for OFC layer of well-
trained RNN. B Similarly, for the STR layer. C Number of
dynamical systems features over learning. D Comparison of
dynamical systems features number in fully trained RNNs.

Conclusion
Decomposing a complex task into simpler components at the
level of elements of computation is an essential part of be-
havioral shaping. RNNs can benefit from such compositional
training to improve learning and to better match animal behav-
ior. More generally, our result provide a way to model the ways
in which past experiences modulate behavioral strategies.
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