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Abstract 
We introduce a ‘configural shape index’ to quantify the 
quality of configural shape information in deep neural 
networks used to model human visual processing. Unlike 
shape-vs-texture bias measures (Geirhos et al. 2018), 
which capture the relative importance of shape in making 
classification decisions, our index captures the quality of 
shape representations in absolute terms (not relative to 
texture), and can be applied to any layer of any DNN 
model, regardless of model objective. Over a set of 92 
models (including CNNs and transformers trained on a 
variety of tasks), we find low to modest sensitivity to 
configural shape, even in models with near human levels 
of shape-bias. These results suggest that there remains 
significant room for improving the quality of configural 
shape representations in DNN models of object 
recognition. 
Keywords: Shape bias; Holistic processing; Deep Neural 
Networks; Mid-level vision; Visual Perception  

Introduction 
There is significant interest in the extent to which humans 

and deep neural network models (DNNs) rely on object shape 
when performing object-recognition tasks (e.g., Baker et al. 
2018, Herman et al., 2020), with an emphasis on the degree 
of shape-vs-texture bias in humans versus DNNs (Geirhos et 
al. 2018) — human classification decisions are biased toward 
shape information, whereas most models are biased towards 
texture information. Bias, however, is orthogonal to the 
nature and quality of representations — for instance, it is 
possible to be 100% shape-biased when making only 1 
correct shape-based decision and no other correct responses; 
(Doshi et al., 2024). Moreover, an emphasis on bias suggests 
that systems must be good at either shape or texture 
representation, but not both, when in fact the human 
perceptual system excels at both (e.g. Biederman, 1987; 
Julesz, 1975). Thus, it seems worthwhile to focus not only on 
whether decisions are dominated by shape or texture, but to 
focus on the nature and quality of shape (and texture) 
representations. In the present study, we attempt to answer 
the question — what qualities should a “good” shape 
representation possess, and how can we measure the strength 
of shape representations in DNNs used to model human 
visual processing? 

Although there is no widely agreed upon formal definition 
of shape, information regarding object-shape should be 
preserved by affine transformations (translation, rotation, 
scale) since the exact same shape-defining features are 
depicted under each view. In contrast, object-identity (and 
presumably shape) are destroyed by “scrambling” transforms 
which alter the configuration of features in a way that is 
inconsistent with a “different view” of the same object. In the 
current study, we created a Configural Shape Benchmark that 
embodies these properties, quantifying the degree to which 
DNN model representations are tolerant to affine 
transformations while being intolerant to scrambling 
transformations (configural-shape-index = affine-transform 
tolerance minus scramble tolerance). This measure differs 

from shape-bias, which measures the relative importance of 
shape versus texture in making classification decisions. In  
contrast our configural-shape-index measures the strength of 
configural shape representations in absolute terms (not 
relative to texture), which allows for the possibility that a 
system simultaneously has strong shape and texture 
representations (Herman et al., 2020; Jagadeesh & Gardner, 
2022; Long et al., 2018). Moreover, the configural-shape-
index is computed using the intermediate activations of the 
model rather than at the output stage, and thus can be used on 
any layer of any model regardless of objective. 

Method 
Image Dataset. We used the Imagenette validation set 
(Howard, 2019), which is a subset of the official Imagenet1k 
validation set, limited to 3,925 images sourced from 10 easily 
distinguished categories: Tench, English Springer, Cassette 
player, Chain saw, Church, French horn, Garbage truck, Gas 
pump, Golf ball, Parachute. 

 
Critical Stimuli Manipulation: As shown in Fig. 1, we 
systematically modify an image to either maintain or disrupt 
its global structure, while retaining local features at different 
scales (depending on the scramble grid size). The top three 
rows depict modifications through translation, rotation, and 
scaling, respectively, which preserve both global and local 
characteristics of the image. Conversely, the final row 
illustrates a scrambling process that parametrically disrupts 
the global structure: the image is segmented into grids of 
patches of varying sizes, with the ensuing patches then 
shuffled. This progressively degrades spatial coherence, with 

 
Fig. 1. Example translation, rotation and scale shifts in top three 
rows. Bottom row shows Grid Scrambling which breaks an image 
in a grid of different patch sizes and then shuffles the patches. On 
the right is the similarity between each transformed image and the 
original image within the DNN representations from an intermediate 
layer of Alexnet model. 



the leftmost images retaining more of the local context due to 
larger patch sizes.  
Configural-Shape-Index: To compute the tolerance to any 
given transformation within an intermediate model layer, we 
compute the Cosine Similarity between activations to the 
original image, and the transformed image (see Fig. 1). The 
goal is to give high scores to models that have high tolerance 
to affine transformations (translation, rotation, scale), but to 
penalize high tolerance to scrambling. A mean tolerance 
score is computed for translation (orange bars), rotation 
(green bars), and scaling (red bars) individually and the 
average aggregate of these scores represents the tolerance for 
shape-preserving transformations. For grid scrambles that 
disrupt configural shape (purple bars), we compute tolerance 
by deriving a Normalized Area-Under-the-Curve, giving 
greater weight to images with larger patches (i.e. more pixels 
in each patch). The difference between tolerance for shape-
preserving transforms (average of translation, rotation, and 
scale tolerance) and shape-disrupting transforms is then taken 
as the configural-shape-index — a measure of the 
strength/quality of configural shape representation in a given 
model layer. The scores range from -1.0 to 1.0, 1.0 being a 
perfect configural shape representations (perfectly invariant 
to affine transforms, perfectly intolerant to any level of 
scrambling). Although scores of -1 are mathematically 
possible, they would indicate perfect tolerance to scrambling 
and zero tolerance to affine-transformation, and thus the 
effective range is between 0 and 1. 
Models:  We tested 92 models spanning a range of factors 
putatively impacting shape-representation in DNNs, 
including 6 standard feedforward object-recognition CNNs,  
5 CNNs trained on Stylized ImageNet (Geirhos et al., 2018), 
34 CNNs designed for robustness (Salman et al., 2020), 8 
networks with constrained receptive fields (Doshi et al., 
2023; Brendel & Bethge, 2019), 3 self-supervised CNNs 
(Chen et al., 2020), 9 trained with semi-supervised or semi-
weakly supervised networks on expansive datasets (Yalniz et 
al., 2019), 10 Sparse Top-K Networks (Li et al., 2024), and 7 
Vision Transformers (Dosovitskiy et al., 2020), which 
include a Masked Autoencoder variant (He et al., 2022), and 
lastly 10 AlexNet variations with distinct architectural or 
training modifications. For Vision Transformers, we assessed 
the configural-shape-index over the class token 
representation extracted from the last embedding layer, and 
for the remaining models, across all ReLU activation layers 
(focusing on the last ReLU layer for model comparisons). 
 

Results 
Across the full set of models tested, untrained models have 
no sensitivity to configural shape, whereas trained models 
have at best a modest configural shape index score, with 
sensitivity increasing for deeper layers within trained models 
(see Fig. 2a and Fig. 2b). In general, we find that failure 
towards configural shape sensitivity arise because models are 
not tolerant enough to rotation, and are too tolerant to 
scrambling (Fig.  2c), particularly for large patch sizes. 
 
 

Relationship between configural-shape-index and shape-
bias scores: Our findings suggest that models with higher 
shape bias (Geirhos et al., 2018) are not necessarily also 
better at our configural shape processing (r=0.628).  For 
example, the most shape-biased model has a shape-bias score 
of 0.814, but a configural-shape-index of only 0.249. While 
training Resnet50s with stylization dramatically improves 
their shape bias (from 0.214 to 0.814), it leads to only modest 
improvements on our configural shape index (0.2419 to 
0.2497) Similarly, other approaches that increase shape bias 
exhibit similar effects: adversarial robust training increases 
shape bias by 0.511 but the configural shape index by only 
0.08 in Resnet50; diffusion-guided training increases shape 
bias by 0.382 but configural shape by just 0.045 in Alexnet; 
and sparsity raises shape bias by 0.468 while actually 
reducing configural shape by 0.05 in Sparse Top-K networks. 
Thus, models that presumably emphasize shape over textural 
features on the shape bias metric, show no or only marginal 
advancements on the configural-shape-index, highlighting 
that configural shape-index serves as a distinct (and perhaps 
stricter) measure of shape-representation.  

Conclusion 
We find that the proposed configural-shape-index of 
configural shape-quality is low across a wide range of DNN 
models trained with different architectures (convolutional 
neural networks, vision transformers), and training objectives 
(category supervised, self-supervised), even for models with 
substantially heightened shape-bias scores. Taken together, 
our findings reveal a general insensitivity to configural shape 
across models, even for models that show near-human levels 
of shape-bias (Geirhos et al., 2018; Salman et al., 2020; Jaini 
et al., 2023; Li et al., 2024), indicating that the lack of shape-
based representation in DNNs (Baker et al., 2018) remains an 
important challenge for DNN models of object recognition. 

 
Fig. 2. (A) Configural Shape Indexes for Alexnet layers. (B) 
Histogram of Configural Shape Indexes for all models. Gray 
dashed line is the mean index for the 6 untrained models. (C) 
Tolerance to Affine Transformations (Translation, Rotation and 
Scale Shifts) and Scrambling. 



Acknowledgments 
This work was supported by Kempner Graduate Fellowship 
to FRD, NSF CAREER BCS-1942438 to TK and NSF PAC 
COMP-COG 1946308 to GAA. Thanks to Spandan Madan 
for helpful feedback and insightful comments on the project. 
 

References  
 
Geirhos, R., Rubisch, P., Michaelis, C., Bethge, M., 
Wichmann, F. A., & Brendel, W. (2018). ImageNet-trained 
CNNs are biased towards texture; increasing shape bias 
improves accuracy and robustness. arXiv preprint 
arXiv:1811.12231. 
 
Baker, N., Lu, H., Erlikhman, G., & Kellman, P. J. (2018). 
Deep convolutional networks do not classify based on 
global object shape. PLoS computational biology, 14(12), 
e1006613. 
 
Hermann, K., Chen, T., & Kornblith, S. (2020). The origins 
and prevalence of texture bias in convolutional neural 
networks. Advances in Neural Information Processing 
Systems, 33, 19000-19015. 
 
Doshi, F. R., Konkle, T., Alvarez G. A. (2024). Quantifying 
the Quality of Shape and Texture Representations in Deep 
Neural Network Models. In Vision Science Society, 2024. 
 
Biederman, I. (1987). Recognition-by-components: a theory 
of human image understanding. Psychological review, 
94(2), 115. 
 
Julesz, B. (1975). Experiments in the visual perception of 
texture. Scientific American, 232(4), 34-43. 
 
Jagadeesh, A. V., & Gardner, J. L. (2022). Texture-like 
representation of objects in human visual cortex. 
Proceedings of the National Academy of Sciences, 119(17), 
e2115302119. 
 
Long, B., Yu, C. P., & Konkle, T. (2018). Mid-level visual 
features underlie the high-level categorical organization of 
the ventral stream. Proceedings of the National Academy of 
Sciences, 115(38), E9015-E9024. 
 
Howard, J. (2019). Imagenette. Github repository with links 
to dataset. https://github.com/fastai/imagenette 
 
Salman, H., Ilyas, A., Engstrom, L., Kapoor, A., & Madry, 
A. (2020). Do adversarially robust imagenet models transfer 
better?. Advances in Neural Information Processing 
Systems, 33, 3533-3545. 
 
Doshi, F., Konkle, T., Alvarez, G.A. (2023). Feedforward 
Neural Networks can capture Humanlike Perceptual and 
Behavioral Signatures of Contour Integration. In Cognitive 
Computational Neuroscience (CCN), 2023. 
 

Brendel, W., & Bethge, M. (2019). Approximating cnns 
with bag-of-local-features models works surprisingly well 
on imagenet. arXiv preprint arXiv:1904.00760. 
 
Chen, T., Kornblith, S., Norouzi, M., & Hinton, G. (2020, 
November). A simple framework for contrastive learning of 
visual representations. In International conference on 
machine learning (pp. 1597-1607). PMLR. 
 
Yalniz, I. Z., Jégou, H., Chen, K., Paluri, M., & Mahajan, D. 
(2019). Billion-scale semi-supervised learning for image 
classification. arXiv preprint arXiv:1905.00546. 
 
Li, T., Wen, Z., Li, Y., & Lee, T. S. (2024). Emergence of 
Shape Bias in Convolutional Neural Networks through 
Activation Sparsity. Advances in Neural Information 
Processing Systems, 36. 
 
Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, 
D., Zhai, X., Unterthiner, T., ... & Houlsby, N. (2020). An 
image is worth 16x16 words: Transformers for image 
recognition at scale. arXiv preprint arXiv:2010.11929. 
 
He, K., Chen, X., Xie, S., Li, Y., Dollár, P., & Girshick, R. 
(2022). Masked autoencoders are scalable vision learners. 
In Proceedings of the IEEE/CVF conference on computer 
vision and pattern recognition (pp. 16000-16009). 
 
Jaini, P., Clark, K., & Geirhos, R. (2023). Intriguing 
properties of generative classifiers. arXiv preprint 
arXiv:2309.16779. 
 


