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Abstract
One of the central goals of computational neuroscience
is to understand how the dynamics of neural circuits give
rise to their observed function. A popular approach to-
wards this end is to train recurrent neural networks (RNNs)
to reproduce experimental recordings of neural activity.
These trained RNNs are then treated as surrogate mod-
els of biological neural circuits, whose properties can be
dissected via dynamical systems analysis. While recent
advances in population-level recording technologies have
allowed simultaneous recording of up to tens of thousands
of neurons, this represents only a tiny fraction of most
cortical circuits. Here we show that partial observation
can create mechanistic mismatches between a simulated
teacher network and a data-constrained student, even
when the two networks have otherwise matching archi-
tectures. In particular, we show that partial observation of
models of working memory in cortex based on functionally
feedforward or low-rank connectivity can lead to surrogate
models with spurious attractor structure.

Keywords: Recurrent neural networks; short-term memory;
dynamical systems; data-driven modeling

Introduction
Data-driven models of neural population dynamics are con-
structed under a number of less-than-ideal conditions, includ-
ing partial observation of the target neural population, neuronal
and measurement noise, and significant architecture mismatch
between model and biology. This makes it virtually impossible
to accurately reconstruct local information, such as synap-
tic weights (Das & Fiete, 2020). Nonetheless, a reasonable
hope is that data-constrained RNNs should be able to at least
capture the dynamical properties of ground truth circuits at
a qualitative level–that is, recapitulate dynamical phenomena
such as slow time scales, unstable directions, oscillatory dy-
namics, and attractors (Khona & Fiete, 2022; Vahidi, Sani, &
Shanechi, 2024).

In particular, approximate line attractors—sets of stable fixed
points organized along lines in neural activity space—could
in principle be discovered by linearizing fitted RNN dynamics
around a fixed point, and then observing whether the eigen-
spectra of the Jacobian contains just a single eigenvalue with
real part near zero (Sussillo & Barak, 2013; Maheswaranathan,
Williams, Golub, Ganguli, & Sussillo, 2019). Indeed, recent
work has used data-constrained models in this fashion to pro-
pose that line attractors underlie the accumulation of internal
drives to perform complex behaviors like aggression and mat-
ing (Nair et al., 2023; Liu, Nair, Linderman, & Anderson, 2023;
Mountoufaris, Nair, Yang, Kim, & Anderson, 2023).

However, whether this procedure correctly recovers attrac-
tor mechanisms under partial observation remains unknown.
To explore when data-driven RNN modeling and dynamical
systems analysis can uncover spurious attractor structure, we
study a student-teacher learning setup subject to partial obser-
vation and process noise.

Results
Problem setup
We consider a student-teacher setup where the activity of units
in the student RNN obey the discretized rate-based dynamics

xt = (1−α)xt−1 +αAφ(xt−1)+αηt (1)

where α = ∆t/τ is the discretization scale, A ∈ Rd×d is the
dynamics matrix, and ηt ∼ N (0,σ2

ηId) represents isotropic
Gaussian noise. Suppose we fit the dynamics matrix A to
observed data {xo

t }t∈[T ] generated via partial observations of
a teacher RNN of size D > d:

zt = (1−α)zt−1 +αBφ(zt−1)+αξt (2)

xo
t = Pzt , P=

(
Id×d 0d×(D−d)

)
(3)

where B ∈ RD×D, and ξt ∼ N (0,σ2
ξ
ID). Under this model,

the MAP estimate of the inferred dynamics matrix can then be
described solely in terms of properties of the teacher RNN:

Â = α2P(BĈ+∑
T
t=1 ξtφ(zt−1)

⊤)P⊤(ρId +α2PĈP⊤)−1 (4)

where Ĉ = ∑
T
t=1 φ(zt−1)φ(zt−1)

⊤ is the empirical covariance.
To understand whether the dynamics of the teacher are

qualitatively recovered, a natural question arises: When is the
eigenspectrum of Â qualitatively similar to that of B? Here we
focus on the linear case φ(x)= x and the long time limit T →∞,
which is amenable to analytical study. A statistic of particular
interest is the gap between the two largest timescales τ1 and
τ2 of the linear dynamics, which determines the “line attractor
score” log2(τ1/τ2) of Nair et al. (2023). There, scores of order
unity were interpreted as approximate line attractors.

Normal teacher connectivity
First, consider the case in which B is a normal matrix (BB⊤ =
B⊤B), as in classical models of attractor dynamics (Seung,
1996). Ordering the eigenvalues of the teacher dynamics ma-
trix B as ℜ(λ1) ≥ ℜ(λ2) ≥ ·· · ≥ ℜ(λD), we show that the
eigenvalues λ̂i of the learned student dynamics matrix sat-
isfy ℜ(λ̂i) ∈ [ℜ(λD),ℜ(λ1)]. As a consequence, spurious
discovery of long persistent timescales of dynamics cannot
occur. Further, we show that if B is symmetric and supports
an approximate line attractor (λ1 = 1− ε, ε,λ2 ≪ 1) of ran-
dom orientation (Seung, 1996), the learned eigenvalues satisfy
λ̂1 ≥ λ1 −O( εD

d ) and λ̂2 ≤ λ2. Thus, an approximate line at-
tractor is recovered so long as the subsampling fraction does
not overwhelm ε. We illustrate an example of this successful
recovery in Fig. 1.

Non-normal teacher connectivity
If B is non-normal, severe overestimation of persistent
timescales of dynamics can occur as a consequence of non-
normal amplification. We demonstrate this explicitly for two
neuroscience-inspired connectivity structures:
Functionally feedforward networks: We next consider
teacher connectivity of the form B = UTU⊤, where T is



(a)

0.25

0.00

0.25

St
im

ul
us

 (A
.U

.)

Input

0 10 20 30 40 50
t

0.25

0.00

0.25

Re
ad

ou
t (

A.
U.

)

Network
Ideal

(b)

10
0

10

Ground truth

0 10 20 30 40 50
t

10
0

10

Learned

Ne
ur

al
 R

es
po

ns
e 

(A
.U

.)

(c)

100 0 100 200
PC1 (A.U.)

100

0

100

200

PC
2 

(A
.U

.)

Ground Truth

0.0

0.5

1.0
t/T

(d)

20 0 20 40
PC1 (A.U.)

20

0

20

40

PC
2 

(A
.U

.)

Learned

0.0

0.5

1.0

t/T

Figure 1: Successful recovery of a line attractor from recordings
of its activity. (a). Input signal to be integrated, shown alongside
the output for the true network and an ideal integrator. (b).
Comparison of learned and ground truth neural activity. (c-d).
Projection of flow fields of true and fitted models onto the top
two principle components of their activity. The line attractor
score of the fitted model is 6.67.

a strictly upper triangular matrix satisfying Ti j = δi+1, j +
βδi,1(1 − δ1, j), and U is an orthonormal matrix. Although
connectivity is fully recurrent, it is functionally feedforward in
that it supports sequential activation of orthogonal modes of
activity. Here, β controls the strength of skip connections that
further amplify the output mode of activity. Like line attractors,
connectivity of this form can be used to maintain memory of
and integrate external inputs over time. However, this memory
is achieved without long persistent timescales generated via
large eigenvalues (Goldman, 2009; Ganguli, Huh, & Sompolin-
sky, 2008). These functionally feedforward chains have been
proposed to underlie short-term memory storage in cortex
(Daie, Svoboda, & Druckmann, 2021; Daie, Fontolan, Druck-
mann, & Svoboda, 2023). In Fig. 2, we show that fitting a latent
linear dynamical system (LDS) to partially observed activity
of a functionally feedforward network performing a simple 1D
integration task can spuriously yield a line attractor.

Low-rank networks: Suppose the teacher dynamics matrix is
both non-normal and low-rank, as in recently-proposed mod-
els for cortical computations (Dubreuil, Valente, Beiran, Mas-
trogiuseppe, & Ostojic, 2022). We address a minimal case
where B = MN⊤, M ∈ RD×r, N ∈ RD×r. If N⊤M = 0r×r and
N⊤N = M⊤M = γ2Ir, then B has all 0 eigenvalues, but is non-
normal. Here γ2 is a scale parameter that controls the degree
of non-normality. If one selects γ2 ∼ O( D√

r ), then the elements

of B are O(1). In this case, when d << D, we show that the r
eigenvalues of the learned dynamics matrix λ̂i approach 1. We
illustrate via simulations that such overestimation of eigenval-
ues qualitatively extends to low-rank teachers with non-trivial
eigenspectra and to the nonlinear setting, thereby causing
spurious discovery of attractors (Fig. 3).
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Figure 2: Spurious discovery of a line attractor from recordings
of a functionally feedforward network. (a). Input signal to be
integrated, shown alongside the output for the true network
and an ideal integrator. (b). Comparison of learned and ground
truth neural activity. (c-d). Projection of flow fields of true and
fitted models onto the top two principle components of their
activity. In the true model, the slowest points of dynamics are
misaligned with activity. The line attractor score of the fitted
model is 6.13.

Conclusions and extensions
We have shown that partial observation can result in spurious
attractor dynamics in data-constrained RNN models. Though
we do not show the results here, we have demonstrated that
alternative fitting approaches also suffer from overestimation
of eigenvalues as a consequence of partial observation (Nair
et al., 2023; Dinc, Shai, Schnitzer, & Tanaka, 2023). In to-
tal, our results illustrate how partial observation can give rise
to mechanistic mismatches between the circuits generating
neural activity and data-constrained models.
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Figure 3: Spurious discovery of a limit cycle from a non-normal
rank-2 teacher in the nonlinear setting. (a). Learned and
ground truth dynamics matrix eigenvalues. (b) Sample snippets
of true and fitted neural activity. (c-d) Randomly sampled
trajectories from the (c) learned and (d) ground truth dynamics,
projected onto the top three principal components.
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F. d'Alché-Buc, E. Fox, & R. Garnett (Eds.), Advances in
neural information processing systems (Vol. 32). Curran As-
sociates, Inc. Retrieved from https://proceedings
.neurips.cc/paper files/paper/2019/file/
d921c3c762b1522c475ac8fc0811bb0f-Paper.pdf

Mountoufaris, G., Nair, A., Yang, B., Kim, D.-W., & Anderson,
D. J. (2023). Neuropeptide signaling is required to implement
a line attractor encoding a persistent internal behavioral state.
bioRxiv . Retrieved from https://www.biorxiv.org/
content/early/2023/11/05/2023.11.01.565073 doi:
10.1101/2023.11.01.565073

Nair, A., Karigo, T., Yang, B., Ganguli, S., Schnitzer,
M. J., Linderman, S. W., . . . Kennedy, A. (2023).
An approximate line attractor in the hypothalamus
encodes an aggressive state. Cell , 186(1), 178-
193.e15. Retrieved from https://www.sciencedirect
.com/science/article/pii/S0092867422014714 doi:
https://doi.org/10.1016/j.cell.2022.11.027

Seung, H. S. (1996). How the brain keeps the eyes still.
Proceedings of the National Academy of Sciences, 93(23),
13339-13344. Retrieved from https://www.pnas.org/
doi/abs/10.1073/pnas.93.23.13339 doi: 10.1073/
pnas.93.23.13339

Sussillo, D., & Barak, O. (2013, 03). Opening the Black Box:
Low-Dimensional Dynamics in High-Dimensional Recurrent
Neural Networks. Neural Computation, 25(3), 626-649. Re-
trieved from https://doi.org/10.1162/NECO a 00409
doi: 10.1162/NECO a 00409

Vahidi, P., Sani, O. G., & Shanechi, M. M. (2024).
Modeling and dissociation of intrinsic and input-driven
neural population dynamics underlying behavior. Pro-
ceedings of the National Academy of Sciences, 121(7),
e2212887121. Retrieved from https://www.pnas.org/
doi/abs/10.1073/pnas.2212887121 doi: 10.1073/pnas
.2212887121

https://www.biorxiv.org/content/early/2023/08/07/2023.08.04.552026
https://www.biorxiv.org/content/early/2023/08/07/2023.08.04.552026
https://doi.org/10.1038/s41593-020-00776-3
https://doi.org/10.1038/s41593-020-00776-3
https://doi.org/10.1038/s41593-020-0699-2
https://proceedings.neurips.cc/paper_files/paper/2023/file/a103529738706979331778377f2d5864-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/a103529738706979331778377f2d5864-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/a103529738706979331778377f2d5864-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/a103529738706979331778377f2d5864-Paper-Conference.pdf
https://doi.org/10.1038/s41593-022-01088-4
https://doi.org/10.1038/s41593-022-01088-4
https://www.pnas.org/doi/abs/10.1073/pnas.0804451105
https://www.pnas.org/doi/abs/10.1073/pnas.0804451105
https://www.sciencedirect.com/science/article/pii/S0896627308010830
https://www.sciencedirect.com/science/article/pii/S0896627308010830
https://doi.org/10.1038/s41583-022-00642-0
https://doi.org/10.1038/s41583-022-00642-0
https://www.biorxiv.org/content/early/2023/05/22/2023.05.22.541741
https://www.biorxiv.org/content/early/2023/05/22/2023.05.22.541741
https://proceedings.neurips.cc/paper_files/paper/2019/file/d921c3c762b1522c475ac8fc0811bb0f-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/d921c3c762b1522c475ac8fc0811bb0f-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/d921c3c762b1522c475ac8fc0811bb0f-Paper.pdf
https://www.biorxiv.org/content/early/2023/11/05/2023.11.01.565073
https://www.biorxiv.org/content/early/2023/11/05/2023.11.01.565073
https://www.sciencedirect.com/science/article/pii/S0092867422014714
https://www.sciencedirect.com/science/article/pii/S0092867422014714
https://www.pnas.org/doi/abs/10.1073/pnas.93.23.13339
https://www.pnas.org/doi/abs/10.1073/pnas.93.23.13339
https://doi.org/10.1162/NECO_a_00409
https://www.pnas.org/doi/abs/10.1073/pnas.2212887121
https://www.pnas.org/doi/abs/10.1073/pnas.2212887121

	Abstract
	Introduction
	Results
	Problem setup
	Normal teacher connectivity
	Non-normal teacher connectivity

	Conclusions and extensions
	Acknowledgements
	References

