
An EEG-fMRI Investigation of the Spatiotemporal Hierarchy of Social Actions

Emalie McMahon (emaliemcmahon@jhu.edu)
Department of Cognitive Science, Johns Hopkins University

3400 N Charles St
Baltimore, MD, USA 21218

Elizabeth Jiwon Im (imelizabeth@jhu.edu)
Department of Cognitive Science, Johns Hopkins University

3400 N Charles St
Baltimore, MD, USA 21218

Michael F. Bonner (mfbonner@jhu.edu)
Department of Cognitive Science, Johns Hopkins University

3400 N Charles St
Baltimore, MD, USA 21218

Leyla Isik (lisik@jhu.edu)
Department of Cognitive Science, Johns Hopkins University

3400 N Charles St
Baltimore, MD, USA 21218

Abstract
Recent work has argued that in addition to the dorsal and
ventral visual streams, there is a third visual stream pro-
jecting laterally from primary visual cortex to the supe-
rior temporal sulcus that is specialized for dynamic so-
cial content. A key characteristic of the dorsal and ven-
tral streams is hierarchical computations. To investigate
whether the lateral visual stream also has hierarchical
computations, we combine the spatial precision of fMRI
with the temporal precision of EEG to investigate the di-
rection of information flow through lateral regions of the
brain. We find evidence of a temporal and spatial dis-
sociation between features computed early and late in
both ventral and lateral regions of the brain providing ev-
idence of hierarchical computations in the lateral visual
stream and insight into visual processing of dynamic, so-
cial scenes.
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Introduction
The ability to understand the actions and interactions of others
is an important part of daily life. The social actions of others,
such as talking, hugging, or waving goodbye, are priortized
in the brain and behavior (Dima, Tomita, Honey, & Isik, 2022;
Wurm, Caramazza, & Lingnau, 2017; Tarhan & Konkle, 2020;
McMahon & Isik, 2023). The extent to which an action is di-
rected at someone else is an important dimension of action
understanding in the lateral occipital temporal cortex (LOTC),
a region implicated in action understanding (Dima et al., 2022;
Wurm et al., 2017; Tarhan & Konkle, 2020). Further, the su-
perior temporal sulcus (STS), slightly anterior to LOTC, there
are regions that selectively respond to two or more people en-
gaged in a social interaction (Isik, Koldewyn, Beeler, & Kan-

Figure 1: Participants in EEG and fMRI viewed videos of
dyadic social actions (500 ms and 3 s, respectively). Partici-
pants online rated features of the social visual scene.

wisher, 2017; Walbrin, Downing, & Koldewyn, 2018). This and
related work have led to recent theoretical proposal of a lateral
visual pathway that is specialized for recognizing agentic ac-
tion (Wurm & Caramazza, 2022) or dynamic social perception
more generally (Pitcher & Ungerleider, 2021).

Pitcher and Ungerleider (2021) proposed that lateral path-
way representations are organized hierarchically from low-
level features in early visual cortex (EVC) to high-level fea-
tures in the STS, analogous to what has been found in
ventral stream representations (DiCarlo, Zoccolan, & Rust,
2012). A prior study utilized functional magnetic resonance
imaging (fMRI) to reveal that features of social actions are
organized hierarchically in an increasingly abstract manner
along the anterior-to-posterior axis of the lateral visual stream
(McMahon, Bonner, & Isik, 2023). However, due to the poor



temporal resolution of fMRI, the direction of information flow
through these regions is unknown. To investigate this ques-
tion, in the current study, we combine the high temporal res-
olution of EEG and the high spatial resolution of fMRI using
a cross-validated encoding method for EEG-fMRI fusion. In
particular, we decode visual and social features from the EEG
signal and predict voxel-wise fMRI responses using the EEG
signal at each time point.

Methods
Participants
Participants (n = 21, 5 Males, M = 21.4 years, SD = 2.9 years)
gave informed consent prior to partition in accordance with the
Johns Hopkins University Institutional Review Board and were
either given course credit or monetary compensation for their
time. One participant was excluded from subsequent analy-
ses due to excessive movement.

EEG Experiment
EEG signals were recording using a 64-channel cap. During
the experiment, participants viewed 250 short video clips of
social actions. The videos are the same as in McMahon et al.
shortened from 3 s to the central 500 ms to facilitate time lock-
ing to the EEG signal (2023). The training-test split (200 and
50 videos in train and test sets, respectively) from the origi-
nal fMRI experiment was maintained. Videos in the training
set were repeated four times, and videos in the test set were
repeated sixteen times.
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Figure 2: Decodability of select features from the EEG signal
across time. Shaded regions are the 95% confidence intervals
from bootstrapped variance distributions. Bold horizontal lines
indicate significant decoding at the level of p ¡ 0.05. The time
in parentheses is the first time point of significant decoding.

Analysis
EEG preprocessing EEG data preprocessing was per-
formed using MATLAB R2023b and FieldTrip (Oostenveld,
Fries, Maris, & Schoffelen, 2011). The EEG data were aligned
to stimulus onset and cut to 1.2 s (0.2 s pre-stimulus to 1 s

post-stimulus onset), baseline-corrected using the 0.2 s prior
to stimulus onset, and high-pass filtered at 0.1 Hz. Trials with
muscle artifacts or high variability were removed. Eye move-
ment artifacts were removed using independent component
analysis (ICA). Finally, data were median centered, 30 Hz low-
pass filtered, resampled to 250 Hz, and temporally smoothed
over five consecutive samples with a step size of 2.

Decoding & Encoding For EEG decoding, at each time
point in the EEG signal, we used the 64 channel EEG activ-
ity to predict visual and social features using ridge regression.
The encoded fMRI data were previously published in McMa-
hon et al. (2023) and are publicly available. Using ridge re-
gression, we modeled the activity within all voxels with reliable
signal with the the EEG signal as the predictor for each time
point. Across both analyses, the ridge penalty was fit using
optimized leave-one-out prediction in sklearn (Pedregosa et
al., 2011) in the training set, and evaluation was performed in
the test set. Thus, we used a cross-validated metric to com-
pare neural responses across modality.

Performance was determined as the sign-squared correla-
tion of the predicted signal and true signal. We used permu-
tation testing and bootstrap resampling across the predicted
values to determine significance and estimate variance of the
model performance within each EEG subject. We performed
cluster correction to control for multiple comparisons across
time.

Figure 3: EEG-fMRI fusion results in one representative fMRI
subject at two select time points after stimulus onset (88 ms:
top and 160 ms: bottom).



Results
Feature Decoding
We find that we were able to decode many features of the
visual-social scene from the EEG signal. Following cluster
correction: indoor, spatial expanse, object directedness, agent
distance, communication, and arousal have significant decod-
ing across participants (Figure 2). We see a progression in the
onset timing from early decoding of lower-level features of the
scene (indoor, tonset = 96 ms and spatial expanse, tonset = 104
ms) to late decoding of higher level features (object directed-
ness, tonset = 168 ms, agent distance, tonset = 138 ms, com-
munication, tonset = 328 ms, and arousal, tonset = 456 ms) in-
dicating a temporal hierarchy in the representation of social
action features consistent with prior fMRI results (McMahon
et al., 2023).

fMRI Encoding
At each time point for each EEG participant, we predicted the
voxel-wise response in fMRI data from each subject in McMa-
hon et al. (2023). We then averaged the prediction across
EEG participants for every reliable voxel in the brain. We
found a dissociation between early activation in posterior re-
gions and late activation in more anterior visual regions both
in the ventral and lateral regions of the brain (Figure 3). These
results are consistent with the dissociation between lower-
level and higher-level visual features.

Discussion
Here we investigated the spatiotemporal hierarchy of social
actions in the lateral stream of the human brain. Using EEG
decoding, we find that features of social actions are computed
hierarchically. Using a novel EEG-fMRI fusion method, we
also find a temporal dissociation between between posterior
regions and anterior visual regions of the brain. Together,
these results provide support for a spatiotemporal hierarchy in
the lateral stream that mirrors similar findings in ventral tempo-
ral cortical responses. In future analyses, we will investigate
the shared variance that the EEG signal predicts in the visual-
social features and the fMRI responses.
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