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Martin V. Butz (martin.butz@uni-tuebingen.de)
Neuro-Cognitive Modeling, Faculty of Science, University of Tübingen,
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Abstract
Voice identity recognition in auditory-only conditions is
facilitated by knowing the face of the speaker. This effect
is called the ‘face-benefit’. Based on neuroscience find-
ings, we hypothesized that this benefit emerges from two
factors: First, a generative world model integrates infor-
mation from multiple senses to better predict the sensory
dynamics. Second, the model substitutes absent sensory
information, e.g., facial dynamics, with internal simula-
tions. We have developed a deep generative model that
learns to simulate such multisensory dynamics, develop-
ing latent speaker-characteristic contexts. We trained our
model on synthetic audio-visual data of talking faces and
tested its ability to recognize speakers from their voice
only. We found that the model recognizes previously seen
speakers better than previously unseen speakers when
given their voice only. The modeling results confirm that
multisensory simulations and predictive substitutions of
missing visual inputs result in the face-benefit.
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Introduction
Human communication is multimodal. For example, hearing
and seeing a speaker talk improves speech understanding
(Peelle & Sommers, 2015). Perhaps surprisingly, visual in-
formation about a speaker’s face can also help process their
speech later on when only auditory speech is provided: many
experiments have shown that when participants first saw the
face of a speaker talking, they were later better at identify-
ing this speaker or recognizing spoken words under auditory-
only conditions, compared to a control condition where the
face was not shown (von Kriegstein et al., 2008; Maguin-
ness, Schall, & Kriegstein, 2021). Based on neuro-imagining
studies, von Kriegstein et al. (2008) hypothesized that this
so-called ‘face-benefit’ develops from internal simulations of
familiar speakers’ faces. The face-benefit occurs both for
auditory-only voice identity recognition as well as for auditory-
only speech recognition. So far, the face-benefit and neu-
roimaging findings have only been explained qualitatively.

Here, we present the first approach to model the face-
benefit for voice identity recognition. Our main contributions
are the following:
• We present a multimodal world model that jointly encodes

and simulates signals from different sensory modalities.
• We show that face-benefits develop from internal face simu-

lations of familiar speakers, providing the first model-based
explanation for the findings in humans.

Methods & Material
Multimodal World Model
In line with theories of predictive processing (Friston, 2010;
Huang & Rao, 2011; Hohwy, 2013), we hypothesized that hu-
mans maintain an internal generative model that continuously
attempts to predict future sensory input. We implement such a

Figure 1: Multimodal world model that learns to predict
auditory-visual inputs by developing modality-specific codes
(zzza

t , zzzv
t ) and supramodal hidden states (hhht ). Via internal simu-

lation (purple arrow) missing inputs are substituted.

world model (Ha & Schmidhuber, 2018; Friston et al., 2021) as
a Recurrent State Space Model (RSSM, Hafner et al., 2019).
Importantly, we extend the RSSM by (1.) multimodal pro-
cessing pathways and (2.) cross-modal simulations.

Our model with trainable parameters φ is computed by:1

Full state ssst ← (hhht ,zzza
t ,zzz

v
t ) (1)

Audio prior ẑzza
t = pa

φ(hhht) (2)

Audio post. zzza
t = qa

φ(hhht ,oooa
t ) (3)

Audio dec. ôooa
t = da

φ(hhht ,zzza
t ) (4)

Dynamics hhht = fφ(ssst−1) (5)

Vis. prior ẑzzv
t = pv

φ(hhht) (6)

Vis. post. zzzv
t = qv

φ(hhht ,ooov
t )(7)

Vis. dec. ôoov
t = dv

φ(hhht ,zzzv
t )(8)

The state ssst of the model (Eq. 1) is composed of a
supramodal hidden state hhht and modality-specific sensory
codes zzza

t and zzzv
t for audio (a) and vision (v). At each time

t, the model observes a new audio signal (oooa
t ) and an im-

age (ooov
t ) and embeds these observations into its stochastic2

sensory codes zzza
t and zzzv

t (Eq. 3, Eq. 7). Subsequently, it up-
dates its hidden state hhht (Eq. 5). From the new latent state,
the model can reconstruct the observations oooa

t and ooov
t (Eq. 4,

Eq. 8). Furthermore, the model makes prior predictions about
its next sensory codes ẑzza

t and ẑzzv
t (Eq. 2, Eq. 6), before new

inputs arrive and the process is repeated (see Fig. 1).
To deal with partially missing observations, we implement

a cross-modal simulation mechanism. When a certain ob-
servation oooi

t for modality i ∈ {v,a} is missing, the model sub-
stitutes the sensory code zzzi

t with its prior prediction ẑzzi
t (see

Fig. 1). During model training, we randomly activate cross-
modal simulation for visual inputs with 50% probability.

All components are implemented as neural networks, as in
Hafner et al. (2020), and their parameters φ are trained to min-
imize a variational free energy loss L , i.e., a computational
neuroscience-inspired objective (Friston, 2010):

L(φ) = Eqφ

[
∑

i∈a,v
LNLL(oooi

t , ôoo
i
t ,φ)+LKL(qi

φ, pi
φ,φ)

]
(9)

1Blue components are newly added to the RSSM.
2Following Hafner, Lillicrap, Norouzi, and Ba (2020), we sample

zzzi
t from a vector of categorical distributions.
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Figure 2: The model simulates faces based on auditory-only speech input for speakers whose face was seen during training
(left) or not (right).

where the negative log-likelihood LNLL strives for accurate
reconstructions ôi

t and LKL minimizes the KL divergence be-
tween prior pi

φ
and posterior qi

φ
of sensory codes zzzi

t (i ∈ a,v).

Speaker Classifier
To model experiments on voice identity recognition
(Maguinness et al., 2021), we need a module to identify
the speakers’ identity. Decision making is implemented as
a simplified drift-diffusion race model (Ratcliff & McKoon,
2008; Gold & Shadlen, 2007). We train a neural network with
learnable parameters θ, which receives the state ssst of the
world model as input and outputs a categorical probability
Pθ(S j | ssst) over speakers S j. At time t, a speaker choice is
sampled Ŝ j

t and internally aggregated:

Drift: Ŝ j
t ∼ Pθ(S j | ssst) (10) Evidence: S j

sum← S j
sum + Ŝ j

t (11)

A decision is made as soon as the aggregated evidence S j
sum

for some j exceeds a threshold, i.e., S j
sum ≥ 3. We add a con-

stant offset (530ms) as ‘non-decision time’ (Ratcliff & McKoon,
2008). Crucially, when visual input is missing, the network re-
ceives the simulated visual code ẑzzv

t as part of its input, i.e.,
ŝsst ← (hhht ,zzza

t , ẑzz
v
t ). The network is trained to minimize the cross-

entropy between true speakers S j
t and predicted speakers Ŝ j

t .

Talking Faces Dataset
Humans learn to process speech from thousands of conver-
sations over ontogenetic development. To simulate this, our
model is trained on an audio-visual dataset of speakers. For
data generation, we selected faces from the Chicago Face
database (Ma, Correll, & Wittenbrink, 2015), a large-scale
database of face images taken under controlled conditions.
We assigned each face a synthetic voice of a text-to-speech
program (pytssx3, Bhat, 2020). Voice parameters were par-
tially inferred from image data (biological sex, timbre) or ran-
domly assigned (pitch, speed, English dialect). We animated
the faces with SadTalker (Zhang et al., 2023), a state-of-the-
art model for animating faces from still images and audio. We
generated sentences composed of number words (0−30).

Videos were provided to the model as images (64×64 pix-
els, 25Hz). The audio was processed as a Mel spectrogram
(32 channels, 220 hop length) and segmented over time into
25 non-overlapping spectrograms per second, such that each
image of the video was accompanied by a separate spectro-
gram image (scaled up to 64×64 pixels, see Fig. 1).

Results
Our experiment was composed of two parts: (1.) During
model learning, we simulated daily human experience by
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Figure 3: Voice-based identification of speakers with fa-
miliar or unfamiliar faces. Results from similar experiments in
humans (Maguinness et al., 2021) are compared to our model
and ablations, i.e., without simulation or with shared codes zzzt
for both modalities (Wu et al., 2023). We plot % correctly iden-
tified speakers (a) and reaction times (b) (± standard error).

training the model on 500k video frames of 40 speakers. (2.)
For model evaluation, we emulated experimental condi-
tions (Maguinness et al., 2021) and introduced 16 new speak-
ers, with 8 speakers whose faces were never shown (black
screen). We trained models and classifier for 100k more
frames. Training was interspersed with auditory-only test
phases to analyze speaker identification given voice only.

Fig. 2 shows the reconstruction of simulated faces dur-
ing testing, when only perceiving auditory speech. For speak-
ers that were trained with the face (left), the model quickly (t ≈
2) predicted the correct face purely from the voice. For unfa-
miliar faces (right), the model simulated random, sex-specific
facial features or the faces of similarly sounding speakers.

Face simulations strongly affected speaker identification.
Fig. 3 shows the % correctly identified speakers and reaction
times during testing (auditory-only) over training. As for hu-
mans in a similar experiment (Maguinness et al., 2021), our
model learned to identify speakers with familiar faces (blue)
with high accuracy and short reaction times. For unseen
speakers (red), a similar accuracy required much more train-
ing. When cross-modal simulation was deactivated (no sim.)
or observations from separate modalities were embedded into
a shared code zzzt , as in the RSSM of Wu et al. (2023), the re-
sponse pattern was reversed. These models learned to rely
on vision only to identify familiar speakers and failed when this
information was missing.

Conclusion
We have presented a first neuro-computational predictive
model to explain face-benefits in human communication.
Modality-specific codes, sensory substitutions, and internal
face simulations were crucial to model the benefit.
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