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Abstract

Primate inferotemporal cortex (IT) has been linked to the
remarkable human ability of visual object recognition.
The linear linkage hypothesis posits that a linear read-
out of IT neural activity predicts human behavior in core
object recognition tasks within the domain of naturalistic
images. We here ask whether this hypothesis explains
human ability to generalize across image distributions.
Specifically, we test if the representations encoded in pri-
mate IT combined with a fixed linear readout are sufficient
to recognize objects across a variety of image styles such
as cartoons, paintings, and sketches. We find that a lin-
ear decoder trained on primate IT responses to one im-
age style is — without any additional fitting — able to clas-
sify IT responses to other image styles. The predicted
performance of such a decoder, with a plausible number
of neural sites and naturalistic stimulus training, corre-
sponds to human accuracies across test domains. In arti-
ficial neural network models, we find that the more similar
models are to primate IT, the better they generalize. When
explicitly training models for IT alignment, generalization
accuracy increases in correspondence with increased IT
alignment. Our findings support that representations en-
coded in primate IT enable generalization to novel image
distributions with a fixed linear decoder.

Keywords: Human Vision; Object Recognition; Out-of-
Distribution; Generalization; Primate Visual Ventral Stream; In-
ferotemporal Cortex; Deep Neural Networks; Brain Alignment.

Introduction

Humans are able to effortlessly recognize objects across a
wide range of image distributions, including e.g. sketches, car-
toons, and paintings (Kubilius, Kar, Schmidt, & DiCarlo, 2018;
Geirhos et al., 2018, 2021). What underlies this remarkable
human ability to recognize objects in a wide variety of image
styles remains unclear. Previous research has provided evi-
dence for a linear linkage hypothesis — positing that a linear
readout from primate IT produces core object recognition be-
haviors consistent with human behavior (Majaj et al., 2015;
Hong et al., 2016). However, these studies focused on only a
single domain without transfer to other stimulus distributions.

We here aim to distinguish between two key possibilities for
the neural mechanisms underlying human ability to recognize
objects in diverse image distributions: whether generalization
is primarily achieved in the encoder or the decoder. More
specifically, we ask whether the representations encoded by
the primate visual ventral stream in IT support linear decod-
ing of unseen image styles. A negative answer would suggest
that generalization is achieved downstream of IT with a more
sophisticated decoder. A positive answer on the other hand
would support the linear linkage hypothesis based on repre-
sentations from an encoder invariant to the image distribution.

Results

We assembled a diverse image dataset composed of thirteen
distinct image styles. This set includes synthetic naturalistic
images (HvM) (Majaj et al., 2015), from which we derived four
additional styles: silhouette, convex-hull, skeleton and outline
(Kubilius et al., 2018). We further added images from multiple
artistic styles (Kubilius et al., 2018), as well as photographs
in both color and grayscale from Microsoft COCO (Lin et al.,
2014), and rendered images from ThreeDWorld (TDW) (Gan
et al., 2020). Each image style in our dataset contains at least
60 images, with each of the 10 object classes depicted in no
fewer than six images per style. This extensive compilation
facilitates a robust assessment of visual object recognition
across a broad spectrum of image conditions (see Figure 1
for examples).

Primate IT representations generalize across image
styles. We obtained primate IT recordings from Utah micro-
electrode arrays implanted in two macaque monkeys. To
test whether primate IT representations generalize across im-
age styles, we trained a linear ridge decoder on HvM im-
ages and tested — without additional training — decoder per-
formance on held-out images from HvM (in-domain perfor-
mance; Figure 1B) as well as the twelve other image styles
(out-of-domain "OOD” performance; Figure 1C). We simulated
two-alternative-forced-choice (2AFC) classification by select-
ing the class with the highest probability from each target-
distractor pair.

Given recording limitations, we sought to simulate a more
complete primate IT neural population and its access to
larger numbers of in-domain training images that a decoder
could reasonably be trained on during e.g. development.
Across numerous analyses, a multiplicative logarithmic func-
tion emerged as the most suitable choice for modeling how the
decoder’s performance might evolve with increased data rich-
ness. We estimate that with ~ 800 neural sites and ~ 1,000
training images, the linear decoder achieves the same perfor-
mance on OOD image styles as humans (Figure 1C). These
numbers are in line with previous studies analyzing the linear
linkage hypothesis for in-domain classification (Majaj et al.,
2015; Hong et al., 2016, Figure 1B).

Models more similar to IT generalize better. Our results
so far suggest that representations encoded in high-level vi-
sual area IT are sufficient to generalize to new image styles
with a fixed linear decoder. Turning to computational models,
we investigated whether this finding would transfer to repre-
sentations in contemporary artificial neural networks (ANNS).

Specifically, we tested if models with representations that
are more similar to primate IT also exhibit improved perfor-
mance on generalization tasks. We estimate the similarity
between model and primate IT representations with a lin-
ear predictivity metric (Yamins et al., 2014; Schrimpf et al.,
2018, partial-least-squares regression), and model general-
ization performance with the same fixed linear decoder setup
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Figure 1: Primate IT representations are sufficient for generalization across image styles. A Graphical overview: We
trained a linear decoder on primate (green) and model (blue) IT representations from one image style (HvM) and tested, without
additional training, classification performance on 12 held-out image styles. Human behavioral performance (brown) is a key
reference point. B Primate IT decoder in-domain performance, varying the number of neural sites and training images. Dots
indicate the raw primate IT data; dotted lines are extrapolations along increasing numbers of neural sites (x-axis) and numbers
of training images (shades of green). The inset shows the validation of our extrapolations (green line) on a separately recorded
HvM dataset (Majaj et al., 2015, real data, gray line). C Primate IT decoder out-of-domain (OOD) performance, relative to human
performance (brown line). Extrapolations are done as in B. The green circle indicates previously proposed linear linkage decoders
(Majaj et al., 2015; Hong et al., 2016). In these primarily results, we excluded image styles with missing behavioral measurements
or where the extrapolation over-estimated performance in the interpolation regime. Inset shows performance of a sample decoder
vs. human performance on four domains. D Model IT alignment and OOD performance are significantly correlated. Dots indicate

different models. Exponential curve fit: y = 0.51e0-26% (

blue line with 95% confidence intervals, R> = 0.22). E Training a model

for IT alignment. Over several epochs, model alignment increases when explicitly training for it (blue), but not otherwise (gray).
F Generalization performance of the IT-aligned model. OOD accuracy increases across training epochs for the IT-aligned model

(blue, p < 0.01), but not otherwise (gray; p > 0.05).

as before (Figure 1A). In other words, we fit a ridge classifier
to in-domain HvM representations in the model layer associ-
ated with IT, and evaluated its OOD performance on the 12
held-out image styles. Across 155 models from Brain-Score
(Schrimpf et al., 2018, 2020), we observe a significant corre-
lation between models’ IT alignment and their OOD accuracy
(r=0.46,p < 0.01; Figure 1D).

Models trained with IT alignment generalize better. Be-
yond correlational analyses, we tested if explicitly training
models for improved IT alignment would also improve their
generalization performance. We fine-tuned a pre-trained
CORnet-S model (Kubilius et al., 2019) by jointly minimizing
a classification loss on ImageNet and a representational sim-
ilarity loss (CKA (Kornblith, Norouzi, Lee, & Hinton, 2019)).
This loss specifically targets discrepancies between represen-
tations in the model’s ”IT” layer and those observed in primate
IT, and thus promotes a closer alignment with primate neu-

ral characteristics (Dapello et al., 2022). Training success-
fully improved model IT alignment (Figure 1E) as well as OOD
generalization performance (Figure 1F, correlation between IT
alignment and OOD accuracy r =0.67, p < 0.01), while train-
ing the model with the ImageNet loss alone does not affect IT
alignment or OOD accuracy.

Conclusion

Our results establish the IT linear linkage hypothesis for pri-
mate generalization ability across image distributions. We find
that representations in primate IT combined with a fixed lin-
ear decoder trained on only one domain are sufficient for the
recognition of objects in other image styles. These findings
transfer to computational models: in a correlational analysis
with over 150 models as well as direct model optimization, we
observe that models generalize better the more IT-like they
are.
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