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Experience replay is a powerful mechanism to learn
efficiently from limited experience. Despite several
decades of striking experimental results, the factors
that determine which experiences are selected for
replay remain unclear. A particular challenge for current
theories is that on tasks that feature unbalanced
experience, rats paradoxically replay the
less-experienced trajectory. To understand why, we
simulated a feedforward neural network with two
regimes: rich learning (structured representations
tailored to task demands) and lazy learning
(unstructured, task-agnostic representations). We find
that rich, but not lazy, representations degrade
following unbalanced experience, an effect that could
be reversed with paradoxical replay. To test if this
computational principle can account for the
experimental data, we examined the relationship
between paradoxical replay and learned task
representations in the hippocampus. Strikingly, we find
a strong association between the richness of learned
task representations and the paradoxicality of replay.
Taken together, these results suggest that paradoxical
replay specifically serves to protect rich
representations from the destructive effects of
unbalanced experience.
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Introduction. Leading theories of the content and
function of hippocampal replay emphasize a dual role
in both memory consolidation (typically during off-line
states; a fundamentally retrospective process) and in
planning upcoming decisions (on-line; a prospective
process). Both these accounts predict that the
content of hippocampal replay should align closely
with proximal experience, whether recent or
upcoming. However, several studies have found
preferential replay of trajectories not recently
experienced (Carey et al., 2019; Gillespie et al., 2021;
Gupta et al., 2010). Interestingly, studies reporting
such “paradoxical replay” have in common that
experience is highly unbalanced (i.e. repeating one
specific trajectory). A largely separate computational
literature has shown that unbalanced training makes
memory storage in neural networks susceptible to
destructive interference (McClelland et al., 1995;
Norman et al., 2005). This idea suggests a specific
hypothesis for the function of paradoxical replay: to
protect memories from the destructive effects of
unbalanced experience. Here, we test this hypothesis
in a model neural network and in neural data from the
rat hippocampus.

Results. We first explore the effects of unbalanced
experience in three-layer neural networks trained on a
contextual discrimination task (context 1: L+R-,
context 2: L-R+; Figure 1a, b) using two distinct
training regimes with different computational tradeoffs
(Flesch et al., 2022, 2023). Using a balanced training
regime where all task conditions occur with equal
frequency, “rich learning” networks (small initial
weights variance, σ = 0.0025) learned more slowly
compared to “lazy learning” networks (large variance,
σ = 0.25). Input-to-hidden weights in rich networks
captured the task structure into a low-dimensional
representation (Figure 1c) robust to perturbation in
the inputs. Conversely, in lazy networks, input
weights remained unchanged and high-dimensional
(Figure 1d) making the network more sensitive to
input perturbations (data not shown).

Next, we examined the effects of unbalanced training
on these two different network regimes. Under these
conditions, rich networks developed biased
representations, with input weights favoring positive
outcomes (Figure 1e, top row) resulting in decreased
performance on the task. We hypothesized that
paradoxical replay could help rebalance
representations for both outcomes. To test this, we
simulated replays with an overrepresentation of the
less-experienced task conditions after biased training
(Figure 1f). This led to unbiased representations for
both outcome contingencies (Figure 1f, top row). In
contrast, lazy networks were insensitive to
unbalanced training, and did not require rebalancing
using paradoxical replay (Figure 1e, f, bottom row).
Thus, rich vs. lazy learning networks were
differentially sensitive to unbalanced training regimes,
and paradoxical replay can rebalance the input
weights of a rich learning network in the face of
unbalanced training.

The computational principle unveiled above suggests
a working hypothesis for the function of paradoxical
replay in the rodent hippocampus: it serves to protect
rich, but not lazy, task representations from
interference due to unbalanced training. This
hypothesis predicts that on tasks, subjects and
sessions with low-dimensional “contextual” task
representations characteristic of rich learning,
paradoxical replay should be strong. In contrast,
when high-dimensional, lazy representations are
found, paradoxical replay should be weak.
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Figure 1: (A) Contextual discrimination task schematic: in context 1, left but not right is rewarded; these
contingencies are reversed for context 2. (B) Feedforward neural network architecture trained on this task. (C)
Two distinct learning regimes were initialized: rich-learning (small initial weight variances) and lazy-learning (large
initial weight variances). In rich-learning networks, input weights undergo notable changes, eventually learning
the task structure. (D) Conversely, under the lazy learning regime, input weights stay unchanged during training.
(E) Biased training on the positive contingency resulted in biased representations of input weights in rich-learning
networks, while lazy-learning networks remained unaffected. (F) Paradoxical replay rebalanced the input weights
of rich-learning networks, while lazy-learning networks remained unaffected.

To test this idea in experimental data, we first
operationalize rich vs. lazy learning in terms of
representational similarity of hidden unit activity:
strong separation between hidden activity encoding
the two contexts is indicative of low-dimensional rich
learning, and conversely more mixed encoding
indicates high-dimensional, lazy learning (Figure 2a).
We then correlated this measure of rich learning,
applied to hippocampal place cells, with the strength
of paradoxical replay in the Carey et al. (2019) data
set. Strikingly, those sessions in which rats showed
the largest separation between the two trajectories,
indicative of a rich representation, showed the
strongest paradoxical replay (Figure 2b).

Discussion. These results support a normative
explanation for paradoxical replay, suggesting it
prevents rich representations from the detrimental
impacts of unbalanced experience. We validate the
core prediction that “richer” representations in the
rodent hippocampus exhibit increased paradoxical
replay compared to "lazy" representations. In doing
so, our results link together for the first time two
different experimental phenomena: “splitter cells” in
the hippocampus (Duvelle et al. 2023) and replay.
Moreover, our theory refines the notion of
consolidation in complementary learning systems
theory, in that representations from rich, but not lazy,
task representations benefit from interleaving.

Figure 2: (A) Rich-learning
networks exhibit selective
activation ("splitting") for
either left or right choices,
while lazy-learning networks
have mixed encoding of both
choices. (B) In the Carey data
those sessions with larger
representational distance
showed stronger paradoxical
replay (r = 0.53, p < 0.05).
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