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Abstract

Speech perception relies on continuously tracking infor-
mation at different temporal scales and integrating it with
past context. While prior studies have established that
the human superior temporal gyrus (STG) encodes many
different speech features—from acoustic-phonetic con-
tent to pitch changes and word surpisal—we are yet to
understand the neural mechanisms of contextual inte-
gration. Here we used deep neural networks to inves-
tigate context-sensitive speech representations in hun-
dreds of single neurons in STG, recorded using Neuropix-
els probes. Through this, we established that STG neu-
rons show a broad diversity of context-sensitivity, inde-
pendent of the speech features they are tuned to. We then
used population-level decoding to investigate the role
of this property in tracking spectrotemporal information,
and found that neurons sensitive to long contexts faith-
fully represented speech over timescales consistent with
higher-order word and phrase-level information (~1sec).
Our results suggest that heterogeneity in both context-
sensitivity and speech feature tuning enable the human
STG to track multiple, hierarchical levels of spoken lan-
guage representations.
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Speech is a dynamic acoustic signal that requires listen-
ers to continuously extract and integrate information at mul-
tiple timescales. Prior studies have shown that local neural
populations (Bhaya-Grossman & Chang, 2022; Yi, Leonard,
& Chang, 2019) and single neurons in human superior tem-
poral gyrus (STG) (Leonard et al., 2023) encode many dif-
ferent phonological and linguistic speech features, including
acoustic-phonetic features, prosodic cues like pitch and inten-
sity, and word-level surprisal. This work has uncovered the
neural encoding of perceptually-relevant features, but we are
yet to understand how these elements are represented in the
context of each other and surrounding speech inputs. Re-
cent advances in human single neuron recording techniques
and powerful speech recognition models make it possible to
address key questions about the neuronal encoding of natu-
ralistic speech.

Here, we used high-density Neuropixels probes to record
the activity of hundreds of neurons across all layers of STG
(Leonard et al., 2023) while participants listened to ~200 En-
glish sentences from the TIMIT corpus (2+0.04sec duration)
(Garofolo et al., 1993) during awake brain mapping. We hy-
pothesized that beyond detecting the spectrotemporal con-
tent of speech, STG neurons integrate and represent higher-
order speech features by encoding contextual information. We
tested this by extracting continuous, contextual features from
transformer-based deep neural networks (DNNs), which can
capture relationships across multiple timescales in the input.
We specifically hypothesized that individual neurons would be
sensitive to particular context lengths, giving neural popula-
tions in STG access to multiple, hierarchical representations
of spoken language.

DNN encoding models of neuronal spiking

We built encoding models that learned to predict the spiking
activity of each neuron using hidden states of a pretrained
DNN for the given speech stimulus (Fig. 2). To investigate the
degree of context-sensitivity across neurons, we varied both
the amount of prior context available to the DNN (20-1000ms)
and the DNN layer from which states were extracted (Layers
1,5, 9, 12) (Jain & Huth, 2018). We report results using two
different DNNs: HuBERT-base (Hsu et al., 2021) and WavLM-
base (Chen et al., 2022) (7 x4=28 feature spaces per DNN).
Encoding models were fit using cross-validated ridge regres-
sion and prediction performance was evaluated by computing
the linear correlation (r) between true and predicted spiking
activity of each neuron for a held-out set.

We hypothesized that the ability of the DNNs to cap-
ture context-sensitive speech representations could explain
neuronal spiking. To test this, we compared DNN encod-
ing performance with models fit using context-independent,
linguistically-motivated speech features (e.g. word onsets,
instantaneous pitch, phonemic content etc. (Leonard et al.,
2023)). DNNs better predicted neuronal firing in 73% of neu-
rons (3.5+5% more variance explained) and these improve-
ments were independent of the speech feature a given neuron
was tuned to.

To test whether better encoding performance was simply a
function of features derived from a nonlinear model, we com-
pared DNNs to a different encoding model that learns non-
linear spectrotemporal receptive fields without explicitly ac-
counting for context (Keshishian et al., 2020). DNNs largely
outperformed these models, with as much as 20% increase
in explained variance. This shows that the DNNs’ ability to
integrate speech information over prior context is useful for
modeling STG neurons. Finally, to evaluate the importance
of speech representations learned through DNN pretraining,
we trained encoding models using randomly-initialized DNNs.
The pretrained DNNs outperformed these models in over 83%
of neurons, demonstrating that the model architecture or high
dimensionality is not enough to explain the improvement.

These effects were observed across all Neuropixels record-
ing sites, with some site-specific differences in the degree to
which the DNNs explained more variance than the alterna-
tives. This suggests that in general, neurons throughout the
STG and across cortical layers are characterized by nonlinear,
context-dependent encoding.

Variable context-sensitivity of single neurons

To investigate the degree of context-sensitivity in each neu-
ron, we analyzed how its encoding performance varied with
the amount of prior context and the DNN layer. We normal-
ized each neuron’s performance across the 28 DNN features
spaces and applied principal components analysis (PCA;
Fig. 1). PC 1 captured 25.5% variance across neurons, dif-
ferentiating between neurons that improve performance with
more context up to 500ms, and those that either decrease
or show no change. Thus, sensitivity to the DNN context
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(A) 7 Neuropixels recording sites on an average cortical surface. (B) Single neuron encoding model where 768-D features are

extracted from a speech DNN for every 10ms speech segment with 800ms of context.
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Figure 2: (A) First 2 principal components of encoding patterns. (B) Distribution of PC 1-2 across all Neuropixels sites with example neurons

showing diverse context and DNN layer selectivity.

length was an important source of variation across neurons.
PC 2 captured 11% variance, and differentiated between
neurons that were better predicted by deeper DNN layers
and those with either no or shallow layer selectivity. Prior
work has shown that shallow layers linearly encode acous-
tic features like spectral modulations and envelope magni-
tude, while deeper layers capture higher-order features like
acoustic-phonetic content (Vaidya, Jain, & Huth, 2022; Pasad,
Chien, Settle, & Livescu, 2024). The distribution of PC2 thus
suggests that STG neurons have substantial variability in fea-
ture tuning.
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Figure 3: Neurons show variable improvements in encoding with con-
text, even with similar linguistic tuning.
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Next, we asked whether context-sensitivity is related to
speech feature tuning. For example, it could be the case
that longer context-sensitivity is beneficial for neurons that en-
code features which unfold over longer timescales (e.g., pitch)
compared to shorter timescales (e.g., acoustic-phonetic fea-
tures). However, we found substantial diversity in context-
sensitivity even across neurons tuned to the same speech
feature (Fig. 3). This suggests that the linguistic tuning and
context-sensitivity of STG neurons play different roles in the
neural code for speech. The context-sensitivity was also inde-
pendent of DNN layer selectivity, cortical depth and putative
cell type.

Decoding context from population activity

Lastly, given the heterogeneity in both tuning and context-
sensitivity within and across sites, we hypothesized that
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Figure 4: Unlike the high PC 1 group, the low PC1 group quickly de-
graded with increasing lags in the past. Errorbars represent standard
deviation across random dataset splits.

population-level neural activity could capture an integrated
representation of the speech input at the level of perceptually-
meaningful units like words and phrases. We grouped neu-
rons in either the top or bottom 15th percentile of the first
PC of encoding patterns, ensuring matched distributions of
second PC and encoding performance for spectrogram fea-
tures). Then, we evaluated how well each group could linearly
decode spectrogram content up to 900ms in the past. Mod-
els were trained using cross-validated ridge regression. Per-
formance was measured as linear correlation between true
and predicted spectrograms, averaged across 10 random test
splits. We found that neurons and columns with long context-
sensitivity faithfully represented speech over timescales con-
sistent with higher-order word and phrase-level information
(~1sec) (Fig. 4).

Together, our results suggest that single neurons in the
human STG encode speech in a context-dependent manner.
The substantial heterogeneity of neurons in both feature tun-
ing and context-sensitivity likely enables local populations in
this brain region to track multiple levels of speech content
rapidly and in parallel.
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