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Abstract
Limited data availability restricts how deep learning tech-
niques can model patterns of brain activity. This study
investigates the impact of training set size on the ca-
pacity of autoregressive graph convolutional networks
(GCNs) to learn predictive features from fMRI data. GCN’s
graph structure, few parameters and interpretable fea-
tures make it a good candidate to model complex brain
dynamics. Using a large fMRI dataset, we assessed how
dataset size impacts (1) autoregressive GCN’s ability to
predict future fMRI time points from past time points, and
(2) the predictive value of GCN’s learned features on a
downstream sex prediction task. Our findings show per-
formance saturation at a sample size of 8000 subjects for
both the autoregressive and the downstream task, high-
lighting the model’s ability to capture relevant brain sig-
nals. Standard deviation pooling from GCN layer weights
emerged as the most predictive feature on the down-
stream task. These results motivate further exploration
into more complex model architectures to achieve gains
in performance.
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Introduction
While deep learning offers powerful tools to model the com-
plexity of brain activity, its integration to brain imaging data
analysis pipelines is hindered by the small sample size of most
studies. This data scarcity restricts deep learning models that
are typically trained on enormous datasets. The current study
trains autoregressive graph convolutional networks (GCNs;
Wu et al.) on functional magnetic resonance imaging (fMRI)
data, and investigates the impact of sample size on the reli-
ability of model predictions. In the context of fMRI analyses,
GCNs are well suited to model complex brain dynamics due
to their graph structure, few parameters and interpretable fea-
tures. GCNs can be combined with an autoregressive model
to learn to predict future brain activity patterns (fMRI BOLD

frames) from past time points. These features learned from
the brain can then be applied to downstream tasks, including
categorical predictions.

This research has two objectives:

1. Apply scaling to the sample size to determine the amount
of data needed to achieve robust brain signal reconstruction
with the autoregressive GCN model.

2. Investigate how features learned during GCN training per-
form on downstream prediction tasks as a function of sam-
ple size.

These findings will inform future studies by providing in-
sights into the optimal sample size necessary to leverage
deep learning techniques in fMRI research.

Methods
Model
Autoregressive models predict future signal given the values
of previous time points. The task can be formalised as the
following equation:

X(t + l) = f ({X(i)|t − k < i <= t})+ ε(t + l)

where X is the BOLD time series, t the time index, l the
lag between the predicted time point and the last time point in
the input, f the model, k the number of past time points used
as input and ε the error term to minimize. In this study, we
focused on models trained for prediction at lag l = 1.

The choice of model architecture was based on an autore-
gressive model benchmark based on fMRI data (Paugam, Pin-
sard, Lajoie, & Bellec, 2023). We use the Chebnet (Defferrard,
Bresson, & Vandergheynst, 2016), a type of graph convolu-
tional neural network (Wu et al., 2021), whose nodes corre-
spond to brain parcels and node signals correspond to the
parcels’ time series For each subject, the binary adjacency
matrix used to compute the graph convolutions was estimated
by selecting the 10% most correlated pairs of parcels (Pear-
son’s correlation) on the average functional connectome de-
rived from the training data.



Hyper parameter tuning

We optimized the GCN’s autoregressive performance (R2) on
20793 subjects (80% of the total 25992 subjects) with a 75%-
25% training-validation split, using a random search over the
following hyper-parameters: number of ChebNet layers (3, 6,
13; fixed 8 x 6 size), pooling MLP layer (16-8-1 structure or
single node), learning rate (1e-4 to 0.3 range with 1e-6 to 1
threshold), epochs (16-24), dropout (0-0.3), batch size (128-
256) and the number of time points (12-32) considered for pre-
diction.

Dataset

We preprocessed fMRI data from 38998 subjects from the
UK BioBank (Sudlow et al., 2015) resting-stated task with fM-
RIPrepLTS 20.2.7 (Esteban et al.; RRID:SCR 016216), and
excluded subjects with excessive motion, resulting in 25992
subjects for the final analysis. The preprocessed data was
denoised with load confounds (Wang et al.), and fMRI time
series were extracted from 197 brain regions defined by the
MIST parcellation (Urchs et al., 2019). The fMRI data was
acquired at TR=0.735s, but time series were decimated by
keeping only every 4th sample to estimate potential model be-
haviour on more typical fMRI datasets (TR∼=2.5s).

Scaling experiment

The configuration identified with hyperparameter search was
used for the scaling experiment.

To investigate the impact of sample size on performance,
the experiment was performed on datasets of varying sizes,
range from 100 subjects to the full dataset containing 25,992
subjects: 100, 250, 500, 1000, 2000, 3000, 4000, 5000, 6000,
8000, 10000, 16000, and 20000. For each sample size, the
training process was replicated using 6 random seeds1 to ac-
count for variations in model performance. The data was split
into 60% training the autoregressive model, 20% for validation
of the autoregressive model, 20% for downstream prediction.

Downstream tasks Trained GCN features were extracted
for a downstream sex prediction task. Features were fed into
a Support Vector Machine (SVM) classifier with l2 penalty to
predict the sex label (male or female) of each subject. The
data were split into an 80% training set and a 20% testing set
for model evaluation to assess the model’s capacity to gener-
alize to unseen data.

The following features, which were meant to capture infor-
mation about the underlying brain connectivity, were selected
as predictors.

• The model’s predictions (R2 map) at the next time point
(t+1) across all brain regions, which reflects how well it ex-
plains variance in future brain activity.

• The model’s average R2, which summarizes the model’s
overall explanatory power for future brain activity.
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• Average pooling, standard deviation pooling and max pool-
ing, three summary statistics extracted from the convo-
lutional layers weights that capture activation patterns in
the model’s learned filters, potentially reflecting underlying
brain connectivity patterns.

• A 1D convolution operation on the weights of the convolu-
tional layers.

For comparison, the functional connectome, which is well
known to scale by number of subjects, was also included as a
baseline feature.

Results

The best performing model used a ChebNet architecture with
6 convolutional layers of size 8 x 6 and MLP layers with 16-
8-1 nodes trained for 18 epochs (dropout = 0.022, batch size
= 225, lr = 0.05, threshold = 0.411) using a sequence length
of 29. The model’s performance, as measured by validation
set R2, exhibited a saturation effect with increasing sample
size, achieving a plateau at approximately 8000 subjects, cor-
responding to 4800 subjects in the training set and 1600 in
the validation set (see Figure 1). The mean validation R2 is
0.186, which indicates a poor fit. This does not affect the plan
to investigate the downstream predictions as the work aims to
establish a benchmark for exploring more complex architec-
ture.

Figure 1: Autoregresive model performance scaled by number
of subjects in each experiment.

The downstream sex prediction task revealed a similar pat-
tern to the scaling experiment (see Figure 2), demonstrat-
ing that the model’s ability to extract meaningful informa-
tion from fMRI data stabilizes around a sample size of 8000
subjects, corresponding to 6400 subjects for autoregressive
model training and evaluation, tested on 1600 subjects as the
hold out set for downstream task. The prediction accuracy
from the connectome was 92.3% on average and the best fea-
ture from the GCN was the standard deviation pooling, with an
accuracy of 79.3%.



Figure 2: Sex prediction accuracy scaled by number of sub-
jects in each experiment.

Discussion
A relatively simple autoregressive GCN model achieved per-
formance saturation for fMRI analysis at a sample size of 8000
subjects. This saturation effect held true for both the core
model predictions and downstream sex prediction tasks, with
standard deviation pooling being the most effective feature ex-
traction method. Despite the poor model performance, the ex-
tracted features achieved around 80% accuracy rate on sex
prediction. This is still below the baseline established by func-
tional connectomes. These findings motivate exploration of
more complex architectures for potentially even better perfor-
mance.
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