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Abstract: 

Remembering events from the past requires 
discriminating between similar memories. 
Theoretical and empirical work argues that when 
neural representations of memories overlap, this 
triggers adaptive changes that improve 
discriminability. Here, we tested this idea using (1) 
fMRI to measure initial representational overlap 
among memories for naturalistic scene images and 
(2) Natural Language Processing algorithms to 
quantify the structure of verbal recall. Across six 
runs of fMRI scanning, N=21 participants learned to 
discriminate 18 scene images (three categories * 
six similar exemplars). After scanning, participants 
verbally recalled each scene. Within the 
parahippocampal place area (PPA), we assessed 
the representational structure of the 18 images and 
the relationship of this structure to verbal recall. 
We found that PPA robustly reflected category-
level information, which was preserved in verbal 
recall. Within categories, however, PPA 
representational structure of individual exemplars 
was negatively correlated with the structure of 
verbal recall. These results suggest that neural 
overlap triggered an adaptive reorganization that 
improved discriminability of recalled memories. 

Keywords: fMRI; memory; Natural Language Processing; 
naturalistic images 

Introduction 

As we navigate the world, we experience many highly 
similar and overlapping events (e.g., two visits to the 
same restaurant). One of the primary challenges for the 
memory system is to avoid interference between 
overlapping events (Bakker et al., 2008; Colgin et al., 
2008; Yassa & Stark, 2011). Recent theoretical and 
empirical work suggests that overlap among memories 
can trigger active mechanisms that reduce this overlap 
by exaggerating subtle differences between memories 
(Chanales et al., 2017; Chanales et al., 2021; Drascher 
& Kuhl, 2022; Hulbert & Norman, 2015; Ritvo et al., 

2019; Wanjia et al., 2021; Zhao et al., 2021). However, 
there remains relatively little evidence directly linking 
the overlap of neural representations of memories to 
adaptive changes in how these overlapping memories 
are recalled (behavior). 

In the current work, we sought to directly link neural 
measures of memory overlap to adaptive changes in 
verbal recall. We did this using fMRI to measure 
representational overlap as participants learned 
overlapping naturalistic scene images and a Natural 
Language Processing (NLP) algorithm to measure the 
representational structure of subsequent verbal recall of 
the scene images. Specifically, we tested whether 
overlap among scene representations in 
parahippocampal place area (PPA; Epstein & 
Kanwisher, 1998) would trigger adaptive changes in 
verbal recall that exaggerate subtle differences 
between similar images.  

 

 

Figure 1: Sample stimuli from pool category 

 

Methods 

Task Design  

N=21 participants studied 18 naturalistic scene images 
while being scanned in fMRI. Images were drawn from 
three categories (e.g., pools, libraries, etc.; Figure 1) 
with six exemplars each. Participants completed six 
functional runs during which they learned to associate 
each scene image with a unique face image via (1) 
study trials where they viewed a face image followed by 
a scene image, and (2) vividness trials where they 
practiced recalling scene images when presented with 
each face image. After learning these parings inside the 
scanner, participants completed a verbal recall task 
outside of the scanner. Here, they were presented with 



each face image and asked to type a description of the 
associated scene image using at least 10 words. 

Analysis 

To quantify fMRI activity patterns, we applied a general 
linear model (GLM) to study trials for each image, 
separately for each functional run. This generated a 
map of t-statistics for each image and run that served 
as the “activity pattern.” 

Figure 2: MDS plot of text embeddings of verbal recall 
data. The six categories are separated by color 

To quantify the representational structure of verbal 
recall descriptions, we used the NLP algorithm MPNet 
(Masked and Permuted Network; Song et al., 2020) to 
transform descriptions into 768-dimension text 
embeddings. We confirmed that these text embeddings 
are highly sensitive to category-level structure, as 
demonstrated by clear separation of the 6 categories 
when embeddings were visualized using 
multidimensional scaling (MDS; Figure 2).   

 

 

     

                   

 

                     Figure 3: Example RSM 

In order to relate the representational structure of 
verbal recall to the representational structure of fMRI 
data, we separately constructed representational 
similarity matrices (RSMs; Kriegeskorte et al., 2008) for 
the verbal recall data (text embeddings) and for the 
fMRI data. For the fMRI data, we generated RSMs for 
each pair of consecutive scan runs (referred to as 
timepoints 1-5), to account for potential changes cross 

learning. For each participant, we then correlated the 
verbal recall RSM with the fMRI RSMs (for each 
timepoint) to test whether representational structure in 
PPA predicted (correlated with) the representational 
structure of verbal recall. Importantly, we separately 
considered representational structure for pairs of 
images that were “within category” (e.g., two pools; 
Figure 3a) and pairs of images that were across-
category (e.g., pool – library; Figure 3b). In addition to 
PPA—which we predicted would be sensitive to high-
level scene information—we also considered early 
visual cortex (EVC) as a control region representing 
low-level visual information.  

Results  

Figure 4 shows the similarity between the fMRI (neural) 
RSMs and the verbal recall RSMs, separated by 
timepoint during learning and by within- vs. across-
category similarity. Within PPA, we found that the fMRI 
and recall RSMs for across-category similarity were 
positively correlated across all timepoints (T1: p=0.027, 
T2: p=0.002, T3: p<0.001, T4: p=0.032, T5: p<0.001; 
Figure 4a). The pattern was qualitatively similar in EVC 
(Figure 4b). These results indicate that differences 
between exemplars from different categories that were 
captured in the fMRI-based measures of similarity were 
preserved in verbal recall.  

Next, we considered the critical question of whether 
neural overlap between exemplars from the same 
category (i.e., overlap among similar memories) was 
related to the structure of verbal recall. In PPA, 
representational structure during early time points in 
learning was negatively correlated with the 
representational structure of verbal recall (T1: p=0.046, 
T2: p=0.072, T3: p=0.028, T4: p=0.073, T5: p=0.055; 
Figure 4a). For EVC, however, these correlations were 
all numerically positive (T1: p=0.238, T2: p=0.250, T3: 
p=0.061, T4: p=0.039, T5: p=0.236; Figure 4b).  

Finally, we directly compared the neural-to-recall  
correlations within- vs. across categories via a 2-way 
ANOVA (with factors of timepoints and representational 
level: within- vs. across-category). This revealed a main 
effect of representational level in PPA (p<0.001) but not 
in EVC (p=0.242). Thus, whereas differences between 
categories (category-level structure) was preserved 
from PPA to verbal recall, similarity within category 
(exemplar-level structure) was inverted from PPA to 
recall. In other words, greater overlap among highly 



similar scenes in PPA predicted less similar verbal 
recall. 

 

Figure 4: Within- and Across-Category RSM 
Correlations in PPA and EVC 

 

In summary, we report novel evidence that 
representational overlap among memories triggers 
adaptive reorganization in the content of those 
memories, specifically increasing the discriminability of 
highly similar memories. Our findings also specifically 
implicate PPA—which represents high-level scene 
information (Epstein & Kanwisher, 1998)—in 
representing features that trigger these changes in 
memory. More broadly, our findings are consistent with 
the idea that interference between similar memories is 
resolved via adaptive reorganization of memory 
content. 
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