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Abstract
Predictive coding networks (PCNs) offer a compelling
model for cortical sensory processing, yet their tra-
ditional unidirectional formulations—focusing solely on
top-down or bottom-up processing—limit their applicabil-
ity across various tasks and fail to capture the sensory
system’s bidirectional nature. We introduce a bidirec-
tional predictive coding model, leveraging a single neu-
ral network for both top-down and bottom-up processing.
This approach not only maintains the biological plausibil-
ity of PCNs but also excels in generative and discrimina-
tive tasks simultaneously within a single training session.
Our model presents a unified, mechanistic view of how
the sensory system employs a bidirectional approach to
achieve its functionalities.

Keywords: Predictive coding; Sensory processing; Discrimi-
native and generative tasks

Introduction
Predictive coding (PC) is an influential computational frame-
work for understanding cortical functions. Traditionally, it as-
sumes that perceptual processing is a top-down process
where higher levels of the brain predict sensory inputs and
correct prediction errors by learning and inferring iteratively
in a Bayesian manner (Rao & Ballard, 1999; Friston, 2005)
(Fig. 1a). While top-down PC networks (PCNs) are effec-
tive in generative tasks like memory and image generation
(Salvatori et al., 2021; Oliviers, Bogacz, & Meulemans, 2024),
PC can also be formulated bottom-up, processing inputs
from lower to higher levels of the cortex and excelling in dis-
criminative tasks such as image classification (Whittington
& Bogacz, 2017; Song et al., 2024) (Fig. 1b). However,
these unidirectional PCNs struggle in cross-training scenar-
ios (i.e., top-down PCNs for discriminative tasks, and vice
versa) (Tscshantz, Millidge, Seth, & Buckley, 2023; Sun & Or-
chard, 2020) and fail to mirror the sensory system’s bidirec-
tional architecture and functional versatility (Lamme & Roelf-
sema, 2000; Siegel, Körding, & König, 2000; McMains & Kast-
ner, 2011; Lange, Shivkumar, Chattoraj, & Haefner, 2023).

Our study introduces the bidirectional predictive coding
network (bPCN), overcoming the limitations of unidirectional
PCNs by training both top-down and bottom-up processes
within a single network (Fig. 1c). This approach not only
enhances performance across generative and discriminative
tasks but also inherits classical PCNs’ plausible local com-
putation and Hebbian plasticity. Through bPCN, we offer a
unified model of cortical functions, reflecting the sensory sys-
tem’s inherent bidirectionality.

Models
Classical PCNs minimize the sum of squared layer-wise er-
rors, known as the energy function. However, the formulations
of the energy functions are slightly different between the top-
down PCN (dPCN) (Rao & Ballard, 1999) and the bottom-up
PCN (uPCN) (Whittington & Bogacz, 2017). For an L-layer
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Figure 1: a. Directions of processing in dPCN, uPCN and
bPCN. b & c: Neural implementation of dPCN and bPCN.

PCN, with a sensory layer x(1) and a topmost hidden layer
x(L), the energy functions for dPCN and a uPCN are given by:

Ed = ∑
L−1
l=1
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where W(l) and V(l) are the top-down and bottom-up weights
respectively, and f is a nonlinear function. It is known that
dPCNs perform image generation well (Salvatori et al., 2021;
Oliviers et al., 2024) and uPCNs excel in image classifica-
tion (Whittington & Bogacz, 2017; Song et al., 2024). How-
ever, their performance degrades when cross-trained: when
dPCNs are trained in classification tasks, i.e. when fixing x(1)

to an image and running iterative inference on x(L) to obtain
the correct labels, dPCNs fail to predict the labels with an ac-
curacy similar to uPCNs (Tscshantz et al., 2023). Likewise,
when uPCNs are tested by fixing x(L) to the labels and run-
ning iterative inference on x(1), the bottom layer struggles to
converge to clear average images corresponding to the class
labels (Sun & Orchard, 2020). Our bPCN strikes a balance
between bottom-up and top-down processing, employing an
energy function as follows:

E = Eu/σu +Ed/σd, (3)

where σu and σd determine the weights given to the bottom-
up and top-down energy components. The inference dynam-
ics of a certain layer l can be derived following gradient de-
scent on E as:

ẋ(l) ∝− ε
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u

+ f ′(x(l))⊙
(
(W(l))⊤ε
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where we define ε
(l)
d := (x(l)−W(l+1)x(l+1))/σd and ε

(l)
u :=

(x(l+1)−V(l+1)x(l))/σu i.e., the layer-wise down and up pre-
diction errors, and f ′ the derivative of f , ⊙ the element-wise



Figure 2: Learning performance of bidirectional predictive coding network on MNIST and Fashion-MNIST. a. Comparison
of generated (iteratively inferred) images at x(1) when the x(L) is fixed at class labels. b & c. Classification and generation error
of a bPCN as the balance between bottom-up and top-down streams is adjusted. The parameter α scales the relative weight of
the streams with 1/σd ∝ (1−α)/σd,opt and 1/σu ∝ α/σu,opt.

product. These computations can be implemented in a neural
circuit shown in Fig. 1c, where each value neuron x(l) is con-
nected to two error neurons, as opposed to classical PCNs
where there is a one-to-one mapping between value and error
neurons. Importantly, like in classical PCNs, the learning rules
in our bPCN is Hebbian by gradient descent on E:

∆W(l)
∝ ε

(l−1)
d f (x(l))⊤; ∆V(l)

∝ ε
(l−1)
u f (x(l−1))⊤. (5)

It is worth noting that our bPCN is not equivalent to (trivially)
training a dPCN and a uPCN separately: the two streams
share the same network of neurons, making bPCN a more
efficient and integrated bidirectional model.

Results
We examine our bPCN in performing image generation and
classification simultaneously. During training, x(1) is fixed to
images and x(L) is fixed to the one-hot representation of la-
bels. The model then performs ‘constrained’ inference (Eq. 4)
and learning dynamics (Eq. 5), in a similar way to the uPCN in
Whittington and Bogacz (2017). During image generation, we
fix x(L) to the one-hot labels and perform iterative inference
on x(1) (Eq. 4) to obtain the predicted images, which we then
compare with the average image of each class; during clas-
sification, we fix x(1) to images and perform inference ẋ(L) to
obtain the predicted class labels. The experiments are per-
formed on both MNIST (LeCun, Cortes, & Burges, 2010) and
fashion-MNIST (Xiao, Rasul, & Vollgraf, 2017) and we used a
PCN with 2 hidden layers of 256 neurons for both datasets.
We performed a grid search over possible combinations of
σu and σd and other hyperparameters to obtain the (com-
bined) highest classification accuracy and the lowest RMSE
to the class average images. Our best-performing bPCN is
shown in Table 1, where we compare it with fine-tuned dPCN
and uPCN, as well as BP-trained models (uBP and dBP) for
classification and class-conditional generation. It can be seen
that bPCN excels in both classification and generation tasks,
on par with its specialized counterparts, whereas dPCN and

uPCN struggle when cross-trained. The performance is also
comparable to models trained by BP in each task, where pre-
dicted labels and generated images are obtained by a forward
pass bottom-up and top-down respectively, although there is
no equivalent way of simultaneously training BP-based mod-
els on both tasks. In Fig. 2a we present visual demonstration
of the class-conditioned generation.

Table 1: Comparison of test classification accuracy and con-
ditional generation root mean squared error on the MNIST
dataset.

Accuracy (%) RMSE
Model MNIST F-MNIST MNIST F-MNIST
bPCN 97.0 91.0 0.059 0.045
uPCN 97.9 90.5 0.257 0.279
dPCN 85.1 80.6 0.044 0.018
uBP 97.1 89.9 - -
dBP - - 0.048 0.013

In Fig. 2b and c we study the computational properties of
the bPCN model. We vary a parameter α to control the relative
weights of the top-down and bottom-up streams: α = 0 and 1
correspond to models with only the top-down and bottom-up
streams respectively, and α = 0.5 corresponds to the optimal
σu,opt and σd,opt from the grid search. In both datasets, the
bPCN model has a high tolerance for different weightings of
the streams, maintaining a high classification accuracy and
image generation quality even when α is close to but not ex-
actly 0 and 1.

Conclusion
In this work, we introduced bidirectional predictive coding
networks, a model of top-down and bottom-up sensory pro-
cessing in the cortex. Our bPCN model inherits the biologi-
cally plausible circuit implementation of classical unidirectional
PCNs, and performs discriminative and generative tasks com-
parable to their specialized counterparts. Our model provides
a mechanistic account of bidirectional processing in the sen-
sory system underlying its various functions.
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