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Abstract
Social cognition depends on integrating informa-
tion from both vision and language. However, prior
work has mostly studied vision and language sepa-
rately, not accounting for the rich social visual and
verbal semantic signals that occur simultaneously
in natural settings. To understand how this informa-
tion is integrated during natural movie viewing, we
fit a voxel-wise encoding model that included low-
and mid-level visual and auditory features, as well
as higher-level social and language features, in-
cluding the presence of a social interaction and lan-
guage model embeddings of the spoken language
in the movie. We find distinct voxels supporting
visual social processing and language. However,
surprisingly, we also find that both social and lan-
guage voxels across cortex are best predicted by
visual features extracted from a convolutional neu-
ral network (CNN), suggesting that when vision and
language are combined in naturalistic settings, vi-
sual features dominate neural processing.
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Introduction
Social processing involves integrating visual and lin-
guistic input, however, the processing of these two in-
puts are often studied separately. Previous work using
controlled stimuli has separately mapped the responses
to diverse social signals, including visual (biological mo-
tion, faces) and linguistic (voices, theory of mind, and
language) input in bilateral superior temporal sulcus
(STS). This work revealed regions that were highly se-
lective for specific types of social stimuli but also regions
that responded to multiple types and modalities of so-
cial information (Deen, Koldewyn, Kanwisher, & Saxe,
2015). Recently there has been a push to understand if
the insights gained from simple, controlled experiments
can generalize to more naturalistic stimuli. Looking at
brain responses to more ecological stimuli often reveals
broader activations in the brain and novel findings in
social cognition (Redcay & Moraczewski, 2020). Nat-
uralistic stimuli provide a straightforward way to study
simultaneous vision and language.

To date, encoding models have been used to analyze
either language responses from listening to stories or
podcasts (Huth, de Heer, Griffiths, Theunissen, & Gal-
lant, 2016; Schrimpf et al., 2021; Goldstein et al., 2022),
or visual responses from watching movies (Huth, Nishi-
moto, Vu, & Gallant, 2012; Eickenberg, Gramfort, Varo-
quaux, & Thirion, 2017). Some have analyzed both vi-
sion and language in the same subjects, but using dif-
ferent stimuli for each modality (e.g., silent movies and
podcasts) (Popham et al., 2021). Previous work has
shown that an encoding model approach to naturalistic

stimuli can reveal voxels with unique variance explained
by regions that support social interaction perception in
adult bilateral STS (Lee Masson & Isik, 2021). However,
none have analyzed the neural processing of both vi-
sion and language from the same naturalistic input. This
could be due to the difficulties in interpreting responses
to movies since many social features of interest co-vary
with perceptual features (Grall & Finn, 2022).

Here, we study the neural responses to simultane-
ous vision and language during natural movie viewing
using an encoding model approach that controls for co-
varying features. We model a combination of annotated
and automatically extracted visual, social, and linguistic
features in the movie. We find distinct voxels supporting
social and linguistic representations, yet they are both
best predicted by visual features.

Methods
fMRI experiment
Naturalistic stimuli and data analysis Participants
(n=17, neurotypical, ages 19-34, 10 female) watched a
45 minute episode of the BBC series Sherlock, split into
2 runs. See experimental details in Chen et al. (2017).
For each subject, the fMRI BOLD series for each voxel
within a previously computed intersubject correlation
(ISC) mask (Lee Masson & Isik, 2021) was predicted
with a banded ridge regression model (Dupré la Tour,
Eickenberg, Nunez-Elizalde, & Gallant, 2022) using pre-
viously annotated and automatically extracted features
(Chen et al., 2017). This included the first 147 PCs
of features extracted from the fifth layer of Alexnet
(Lee Masson & Isik, 2021), which predict visual re-
sponses in high-level visual cortex (Eickenberg et al.,
2017). We also extracted motion energy features us-
ing pymoten (Nunez-Elizalde, Deniz, Dupré la Tour, Vis-
conti di Oleggio Castello, & Gallant, 2021). Addition-
ally, we extracted language features from the episode
transcript on both the word and sentence level using
a word2vec model (Mikolov, Chen, Corrado, & Dean,
2013) and a sentence transformer model (sbert; all-
MiniLM-L6-v2, huggingface.co), respectively. Banded
ridge regression allows each feature space to learn a
separate ridge penalty to better account for different
sizes in the feature spaces (i.e., the uni-dimensional an-
notated features versus high-dimensional language and
visual features). To account for temporal autocorrelation
in the movie and fMRI data, we grouped the signal into
blocks of 17 TRs (25.5 s) before splitting into train/test.
We examined the individual product measure, a mea-
sure of the predictive contribution of each feature space
that takes the correlation between feature spaces into
account (Dupré la Tour et al., 2022).

Controlled stimuli and data analysis All participants
also watched videos of point light walkers that were en-
gaged in social actions and point light walkers perform-



ing independent actions (Isik, Koldewyn, Beeler, & Kan-
wisher, 2017). A subset of participants (n=7) completed
a language localizer, listening to audio of intact and de-
graded speech (Scott, Gallée, & Fedorenko, 2017). We
identified the top 100 social interaction and language
selective voxels within temporal and frontal regions.

Results
The full encoding model explains significant group-level
variance (p<0.001, FDR corrected) in all voxels in the
ISC mask (Figure 1).

Figure 1: Group map of the explained variance, aver-
aged across subjects per voxel in MNI space.

The majority of voxels across the whole brain are best
predicted by visual features extracted from Alexnet and
next by motion energy in both group analyses and indi-
vidual subjects (Figure 2). However, in individual sub-
jects, there are voxels that are best predicted by other
features, including the social features (notably valence
and to a lesser extent social interaction) and language
features.

Figure 2: A. Group and B. representative preference
map showing the feature that explains the most vari-
ance in each voxel. C. Percentage of voxels with the
most variance explained by each feature in left and right
hemispheres, averaged across subjects.

Surprisingly, we find strong visual feature predictiv-
ity in social interaction and even language selective re-
gions. In temporal social perception regions and tempo-
ral and frontal language regions, Alexnet embeddings

are significantly more predictive than either social or
language features (Figure 3).

Figure 3: Average explained variance (measured as
individual product measure) in regions localized using
controlled stimuli. Bars represent mean and error bars
represent the standard error of the mean. Asterisks in-
dicate statistical significance.

Discussion
To our knowledge, this is the first attempt at modeling
both visual and linguistic signals in one naturalistic con-
text at the same time. Previous encoding model ap-
proaches have analyzed these modalities in separate
stimuli (Huth et al., 2016; Schrimpf et al., 2021; Gold-
stein et al., 2022; Huth et al., 2012; Eickenberg et al.,
2017; Popham et al., 2021; Tang, Du, Vo, Lal, & Huth,
2023) or focus on analysis of only one type of only one
modality (Lee Masson & Isik, 2021). Here, we model
both the visual and linguistic signals in one naturalistic
context with one encoding model. We find that visual
features extracted from Alexnet are the best predictor
of neural activity across the brain. This is somewhat
surprising as Alexnet is now far from the best vision
model available in terms of either performance or match
to neural data (Conwell, Prince, Kay, Alvarez, & Konkle,
2022). Further, this is not driven by the dimensionality
of the feature space, as Alexnet is reduced to 147 di-
mensions by PCA, while the word2vec feature space is
300D and the sbert feature space is 384D.

The high performance of Alexnet could be due to
a shared semantic space that is well captured by vi-
sion model embeddings. This is also in line with other
work finding semantic alignment between vision and
language (Popham et al., 2021; Tang et al., 2023). Our
results may also support a recent proposal that visu-
ospatial coding is ubiquitous in the brain, even in areas
beyond visual cortex, serving to ground human cog-
nition in a common reference space (Groen, Dekker,
Knapen, & Silson, 2022). Future work will look at other
non-visual models (including larger language models)
and the shared and unique variance of semantic rep-
resentations across vision and language. Overall, this
work highlights the need for multi-modal studies of so-
cial perception in natural contexts.
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